
CS 111: Program Design I
Lecture 21: Midterm postmortem, HTML Law,
Start Networks

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
November 12, 2019

MIDTERM POSTMORTEM

Based on grading to date

n There will be an extremely wide range of grades
n Significant minority of class had difficulty writing the functions

n And Crawler deadline extension from Friday night to Monday
night

docstrings

n Unique to Python among popular languages (and all
languages that Prof. Sloan knows)

n Distinct from Python comments; (so far) CS 111 has never
asked you to write comments (have asked for docstrings!)

n Docstrings not very similar to comments in other languages
q So if you know Java or something, don’t try to use docstring like

comments in that language
n Exactly one per function, must be immediately after def line
def an_example_function(a_formal_parameter):

" " "This is only place for docstring!" " "

Functions: Most important analysis

n First question to ask when you have to design function:
q What is number of input parameters and type of each, and
q Is there a return value? And if so,
q What type is it?

For loop vs. while loop

n When you need to count and/or use a sequence of integers
q Almost always easier to use for loop rather than while loop
q Easier =

n Less likely to make mistakes
n Easier for humans to read
n Easier for you to read

What is a for loop over (most of the time)

n for item in a_list
n for ch in a_string
n for i in range(n)
n for i in range(start, end)
n for i in range(start, end, skip)
n Much less common: for i in range(len(list_or_string))

n WRONG: for i in len(anything) # No, no no, please no!

Accumulator pattern

n Occurs again and again

<sometimes need set-up work here first>
answer_holder = <appropriate start/nil value>
for i in <something, often range statement>:

answer_holder = adjustment for i case
return answer_holder

Midterm programming solutions live in Spyder

n Starting with factorial, as example of accumulator pattern

Remark: Can always convert numerical for to while

n for is there to make life better, not because we have to have it

Generic conversion

answer_h = <start/nil value>
for i in range(a, b, s):

answer_h = update for i
return answer_h

answer_h = <start/nil value>
i = a
while i < b:

answer_h = update for i
i += s

return answer_h

And factorial conversion at Spyder

WEB CRAWLER

def crawl(start, limit):
to_visit = [start]
visited = []
while to_visit:

address = to_visit.pop()
if address not in visited:

content = text @ URL address
#(earlier)

do_the_visit(page, emails, etc.)
visited.append(address)
if len(visited) >= limit:

break

Crawl and Scrape!

n Crawlers crawl for a purpose
n Our assignment: Grab email addresses
n Could just as easily grab all .jpg or all .mp3 or all … files
n Or, a search engine:

q Build a dictionary showing which words/phrases show
up on which web pages

n Or ...

A LITTLE ABOUT WHAT'S ON A
WEBPAGE: HTML

HTML is a markup language

n That has evolved
n Was simple c. 1996, and pretty simple c. 2005

q Now, people want to control look-and-feel of page down to pixels and fonts.
q Plus, we want to grab information more easily out of Web pages.

n Leading to XML, the eXtensible Markup Language.
n XML allows for new kinds of markup languages (that, say, explicitly identify

prices or stock ticker codes) for business purposes.

Four kinds of HTML languages

1. Original HTML: Simple, what the earliest browsers understood.

2. CSS, Cascading Style Sheets
q Ways of defining more of the formatting instructions than HTML allowed.

n (3a) XHTML: HTML re-defined in terms of XML.
q A little more complicated to use, but more standardized, more

flexible, more powerful.
q Never 100% caught on

n (3b) HTML 5: Today's standard; subsumes XHTML
q Many new syntactic elements for multimedia and graphical content

Markup means adding tags

n A markup language adds tags to regular text to identify its
parts

n Tag in HTML enclosed by <angle brackets>
n Most tags have starting tag and ending tag

q A paragraph is identified by a <p> at its start and a </p> at its
end

q A heading is identified by a <h1> at its start and a </h1> at its
end

HTML is just text in a file

n Enter text and tags in just plain ole ordinary text file.

n Use extension �.html� (�.htm� if your computer only
allows three characters) to indicate HTML.

n Any text or code editor (e.g., WordPad, TextEdit, VS
Code) works just fine for editing and saving HTML files.

Parts of a Web Page

Parts of a Web Page

n Start with a DOCTYPE
q It tells browsers what kind of language you're using below.

n Whole document is enclosed in <html> </html> tags.
q The heading is enclosed with <head> </head>

n That's where you put the <title> </title>
q The body is enclosed with <body> </body>

n That's where you put <h1> headings and <p> paragraphs.

First page of crawler sample site

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head> <meta http-equiv="content-type" content="text/html; charset=UTF-8">

<title>crawlerstart</title>

</head>

<body> <h1>Welcome to the CS 111 Webcrawler Start Page!</h1>

<p>
 </p>

Here we have the email addresses of some of our favorite students:

OMMITTED TEXT TO MAKE IT FIT ON ONE SLIDE

<p>And we have links to some other pages such as

this one that is linked from

right here
 </p>

<p>And this other one too!

</p>

</body>

</html>

Other things in HTML

n We're simplifying these tags a bit.
n More can go in the <head>

q uic.edu header (checked early November 2018) had 327 lines in head,
of which about 325 are a combination of:
n Javascript (tons of it)
n References to documents like cascading style sheets

n The <body> tag can also, e.g., set colors.
q <body bgcolor="#ffffff" text="#000000" link="#3300cc"

alink="#cc0033" vlink="#550088">

HTML is not a programming language

n Using HTML is called �coding� and it is about getting your codes
right.

n But it's not about coding programs.
n HTML has no

q Loops
q IFs
q Variables
q Data types
q Ability to read and write files

n Bottom line: HTML does not communicate process!

