CS 111: Program Design 1

Lecture 23: CS: Network Analysis, Dictionaries,
Degree distribution

Robert H. Sloan & Richard Warner
University of lllinois at Chicago
November 19, 2019

UIC

NETWORK ANALYSIS (CONTINUED)

‘ Networkx

= 10 work with graphs in Python, especially for network
analysis:

= import networkx (as nx)
= Learn more at:

a https://networkx.github.io/documentation/networkx-2.3/tutorial.html. Spyder almost
certainly has version 2.3, almost identical to version 2.4, released in October. (Some
important differences from old versions 1.x from 2017 and before)

. networkx provides Graph as basic data type and ways to add nodes

and edges and do all sorts of things, including visualize

https://networkx.github.io/documentation/networkx-2.3/tutorial.html

' Simple graph example

iImport networkx as nx

g = nx.Graph() #Create an empty graph object

#Add several nodes
g.add_node('Alice")
g.add_node('Bob')
g.add_node('Charlie')

g.number_of nodes() -3
g.number_of edges() -0

‘ Simple graph example continued

Add a single edge

In
In
Out
In
Out
In

Out

[9]: g.add edge('Alice’,
(10]:
(10 :
(11]:
(11]:
(12]:
(12]:

g.number_ of edges()
1

g.nodes ()

['Alice’', 'Charlie’,
g.edges()
EdgeView([('Alice',

'Bob ')

'Bob ']

'Bob"))

undirected

‘ Drawing

= networkx can do simple drawing (working with
matplotlib.pyplot under hood):

nx.draw(g, with labels="'True') o

‘ Drawing without node labels
nx.draw(g)

(or, for control freaks or the pedantic)

nx.draw(g, with labels=False)

‘ Adding a bit to the graph

Add some more edges and nodes g.add node("David")
g.add_edges from([("Alice", "Charlie"),

("Alice", "David")])

= add_edges from is a method whose argument should be /ist
of pairs of node names, each pair in ()s.

‘ networkx.draw(g) (as updated)

‘ Key graph statistic 1: Degree

= Degree of node = number of neighbors node has

= Range of different degrees discovered in last 20-30 years to
vary with nature of graph.

= networkx has graph method degree that gives us special data
structure easily converted to a dictionary with all degree
information for graph

‘ degrees from networkx

In [5]: d = networkx.degree(g)

In [6]: d

Out[6]: DegreeView({'Alice': 3, 'Bob': 1, 'Charlie': 1,
'‘David': 1})

In [7]: ddict = dict(d)

In [8]: ddict

Out[8]: {'Alice': 3, 'Bob': 1, 'Charlie': 1, 'David': 1}

Will explain dictionaries shortly; for now: pandas knows them!

| networksx degree data =2 pandas

In [7]: degree _data = pandas.Series(dict(nx.degree(g)))
In [8]: degree data

Out[8]:
Alice
Bob
Charlie

David

R N N Y

= And we know from earlier in semester how to plot graphs from
pandas series: pandas series has method .plot()

‘ Plotting degree data

= We want a Bar plot where the things on the x-axis
have a specific meaningful order (e.g., numbers), as opposed
to being categorical (e.g., names of justices)

degree data.plot(kind="hist")

= (Side note: Abbreviation for that. Can write .hist() instead of
plot(kind='hist')). degree data.hist()

| To make plot of series look nice

= pandas put in stuff automatically for some plots we did earlier
from dataframes, but doesn't always (especially not for
series). If need be:

import matplotlib.pyplot as plt
nlt.xlabel('string I want to see below x axis')

plt.ylabel('Similarly for y')
plt.title('String I want up top in title position')

' Plot with some appropriate labels

Degree Distribution

Count

1.5 2.0 2.5
Degree

‘ Remember what our graph looks like

‘ Centrality

= Alice is connected to everybody else; Bob, Charlie, and David
are connected only to one node each (Alice)

= Alice is obviously the most central

= Various centrality measures to tell which nodes are most
central

= (Prof. Philip Yu of UIC CS found to be "most central”
computer science author by one such measure)

‘ What 1s maximum degree of node in graph with 7
nodes?

A N
s h—1

c. h—2

. h(h—1)/2
e 42

One simple measure of centrality of node

= degree of node / maximum possible degree of any node in
that node's graph

= For n-node graph:
o degree of node/(n- 1)

= networkx will give us (a dictionary of) the centrality of every
node in graph g:

cent = nx.degree centrality(g)

‘ For our little graph

In [11]: cent = nx.degree_centrality(g)

In [12]: cent

Out[12]:

{'Alice': 1.0, 'Bob': ©.3333333333333333,
'Charlie’: ©.3333333333333333,
'‘David': ©0.3333333333333333}

‘ Dictionary = pandas Series

= For some purposes want dictionary format (e.g., look up
degree of a node)
o And dictionaries key storage structure for lots of non-data science

uses; more shortly

= For some analytics, can convert dictionary of degree
centrality form (keys=strings, values=numbers) to
pandas.Series and use pandas to do stuff
o E.g., if | asked you to sort the degrees.

‘ Path lengths

= How many edges do we need to walk over to get from one
node to another?

= 0 to get from node to itself
= 1 to get to immediate neighbor
= > 1 to get to all other nodes

‘ Getting all path lengths

= neworkx has operator for this; gives somewhat complex data
structure back

= pandas to the rescue: It knows how to handle that data
structure and turn it into a dataframe, which we already know
about:

pandas.DataFrame(dict(nx.all pairs _shortest path length
(8)))

Al path lengths in our graph

p = pandas.DataFrame(nx.all pairs_shortest path_length(g))

>>> p

Alice Bob Charlie David
Alice 5 1 1 1
Bob 1 0 2 2
Charlie 1 2 0 2
David 1 2 2 0

| Another stat: Average shortest path length

= networkx will calculate the average over all shortest path
lengths for you:

Get the average path length
print(networkx.average shortest path length(g))

1.5

' Our 4 node oraph is kinda dull

= Point is to apply these sorts of techniques to e.g., graphs of
various types of social networks with thousands to 1 billion+

nodes

= Our example data (real data):
o nodes = twitter users
o edge = follows relationship (could be directed; could ignore direction)
2 ~40,000 pairs of follower, followee

o (This particular bit of twitter formed by technique called snowball
sampling starting at Computational Legal Analytics)

‘ Large networks

« Stored as text files

= One line for each link with line containing names (string or
number) of nodes
2 Notice that if we know all the links then we know what the nodes are

o Both comma and space are common delimiters for between the two
nodes of an edge in large network work

o Both are, broadly speaking, CSV
= We'll use pandas to read these In

‘ Reading graphs from files pandas

= (The joys of working with real data! ©)
= Can still have encoding issues for, e.g., Chinese node name

= CSVfiles and csv_read default. rows separated by newlines
and items in rows separated by commas, but can specify item
separator either
o Comma: pandas.read_csv(<filename>)
o Space: pandas.read_csv(<filename>, sep =" ') # Project?

DRAWING GRAPHS TO DICTIONARIES

‘ Drawing a graph: Node Labels

= Earlier created and drew graph g on
right

« Whose nodes were Alice, Bob,
Charlie, and David

= nx.draw(g, with labels='True'))
put node labels on the graph
automatically

1.0 4

0.8

0.6 -

0.4 4

0.0 4

0.0

0.2

0.4

0.6

0.8

1.0

‘ Introducing Dictionaries: Setting node labels

import networkx as nx

labels dict = {'Alice':'A', Bob':'B"',
'‘David':'D', 'Charlie':'C'}
nx.draw(g, labels=1labels dict)

would label nodes A, B, C, D.
(Note argument is /abels plural)

1.0 1

0.8 A

0.4 1

0.2

0.0 4

0.0

0.2

0.4

0.6

0.8

1.0

‘ Introducing Dictionaries: Setting node labels (cont)

labels dict = {'Alice':'A', 'Bob':'B', 'David':'D",
‘Charlie':'C'}
nx.draw _networkx(g, labels=labels dict)

= In general, dictionary is unordered collection of key-value pairs,
and here key (left) is node's name, value (right of colon) is what
we want printed

2 Much more on dictionaries in 2 slides

‘ Other optional arguments to nx.draw

= |f labels, can adjust their size with font_size = <number>
o Got larger labels for PowerPoint on earlier slide with font_size=20

= Can also change appearance of nodes, e.g.,
o hode_size=8
o nhode_color="red" # or "r"

= What super power did | use to learn all those parameters?
o Documentation at: https://networkx.github.io/documentation/stable/index.html

o Specifically
https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.nx
pylab.draw_networkx.html

https://networkx.github.io/documentation/stable/index.html
https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html

DICTIONARIES

' Bird Watching

= We want to keep track of how many of each bird we have
seen

o Robin: 3, Pigeon: 45, etc.
= Could use parallel lists

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

‘Where did T put that darn pigeon?

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

= Recall list method .index(val) returns first index at which value
val occurs in list but is error if val not in list

= birds.index('pigeon’) =2 1
= birds.index('chicken) = Dbartf

' Bird Watching

= We want to keep track of how many of each bird we have
seen

o Robin: 3, Pigeon: 45, etc.
= Could use parallel lists

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

‘ Adding a new bird sighting?

def new sighting(birds, counts, new bird):
"""Manages bird counts using 2 parallel lists"""
if new_bird not in birds:
birds.append(new bird)
(possible) missing Line
ind = birds.index(new bird)
counts[ind] = counts[ind] + 1

». counts.append(0)
. counts.append(1)

c. counts.append(new bird)
». NoO code necessary
.. | don’t know

 Using Dictionaries

bird dict = {"robin":3, "pigeon":45, "falcon":3}

def new sighting(bird dict, new bird):
if new_bird not in bird dict:
bird dict[new_bird] = ©
bird dict[new _bird] = bird dict[new bird] + 1

= Only one dictionary
= Instead of looking for index, look up by key

Keys and Values

= Keys are immutable
« Values are mutable

= Used[k] = v toadd key k with value v to dictionary d
= If kK is already present, its value is overwritten

Dictionaries!

>>> d = {}

Dictionaries!

the key the value

>>> d = {} z// z//

>>> d["spam"] = "a health food product”

Dictionaries!

the key the value

>>> d = {} z// z//

>>> d["spam"] = "a health food product”
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]

Dictionaries!

>>>
>>>
>>>
>>>

>>>
{42:

the key

a-0./

the value

/

d["spam”] = "a health food product”
d[42] = "an important number"

d["bart"] = ["bart@geemail.com",

d

'an important number',

'bart':

['bart@geemail.com’',

'springfield’],

"springfield"]

'spam’:

'a health food product'}

Dictionaries!

>>>
>>>
>>>
>>>

>>>
{42:
>>>

an

important number'

'springfield’],

the key the value
d = {} / /
d["spam”] = "a health food product”
d[42] = "an important number"
d["bart"] = ["bart@geemail.com",
d
'an important number', 'bart’': ['bart@geemail.com’,
d[42]

"springfield"]

'spam’:

'a health food product'}

Dictionaries!

the key the value

>>> d = {} z// z//

>>> d["spam"] = "a health food product”

>>> d[42] = "an important number”

>>> d["bart"] = ["bart@geemail.com", "springfield"]

>>> d

{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam’': 'a health food product'}
>>> d[42]

an important number'
>>> 42 in d

True

>>> 43 in d

False

>>> "ran" in d

False

Dictionaries!

the key

>>>
>>>

-0/

d["spam"] =
>>> d[42] =
>>> d["bart"] =

>>> d
{42:
>>>

‘an

>>>

True

>>> 43 in d

False

>>> "ran" in d

False

>>> d["ran"]

Traceback (most recent
File "<stdin>", line

KeyError: 1

'an important number',

d[42]

42 in d

'bart':

important number'

the value

/

['bart@geemail.com’',

"a health food product”
"an important number”
["bart@geemail.com",

'springfield’'],

"springfield"]

'spam’:

'a health food product'}

"an important number” in d

A. True
B. False
C. Error

call last):
1, in <module>

Python, you
could be a
bit more

polite!

‘ Dictionaries: Keys and Values, types

= Keys can be any immutable type
o int, string, or float

= Values are mutable and can be any type under the sun
o Including dictionary

= Dictionary itself is a mutable type:

= Recalld[k] = v overwrites if k was already a key

‘ Getting Values from Dictionaries

= d[k] returns value associated with key k in dictionary d
o If k does not exist, this causes an error

= d.get (k) also returns value associated with key k in
dictionary d
2 Returns None if k does not exist

o If a second parameter is included d.get (k, v), then v returned
instead of None if k not found

‘ What 1s d at the end of this code?

d = {3:4}
d[5] = d.get(4, 8)

d[4] = d.get(3, 9)

» {3:4, 5:8, 4:9}

= {3:4, 5:8, 4:4}

c. {3:4,5:4, 4:3}

. Error caused by get
. None

How confident are you of your answer?

~ Very Highly confident: I've got this
. Very confident

c. Somewhat confident
». Not so confident: educated guess

= Not confident at all: random guess and/or bullied into by the
rest of my small group

‘ Keys, Values and Items

= d.keys () returns a dictionary’s keys
= d.values () returns a dictionary’s values
= d.items () returns a dictionary’s key-value pairs

=« Ihese are similar to lists, but NOT lists. To turn into a list,
list(d.keys())

= Just as thing returned by range is similar to but not a list, and
thing returned by ur.connect Iis similar to but not a string

‘ Deleting from a dictionary

= Occasionally need to delete key—value entry from dictionary d

= Python has way to do this:

o del d[key]
o Syntax is a little odd; technically del is operator

‘ Accessing entire dictionary

= for loops can be over dictionaries as well as lists
= |loop variable is successive keys

for key 1in d:
Probably stuff involving value d[k] as well as just k

DEGREE DISTRIBUTIONS

How many close (real world) neighbors

Estimate number of other people living within 100 feet of
where you sleep at night:

0-7
8-15
16-32
3264
65+

How many close neighbors

Estimate highest number of other people living within 100 feet
of bed of anyone in Chicago area not in dorm, prison, military,
or hospital

0-32
32-64
66—125
128—-250
250+

