
CS 111: Program Design I
Lecture 23: CS: Network Analysis, Dictionaries,
Degree distribution

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
November 19, 2019

NETWORK ANALYSIS (CONTINUED)

Networkx

n To work with graphs in Python, especially for network
analysis:

n import networkx (as nx)
n Learn more at:

q https://networkx.github.io/documentation/networkx-2.3/tutorial.html. Spyder almost
certainly has version 2.3, almost identical to version 2.4, released in October. (Some
important differences from old versions 1.x from 2017 and before)

q networkx provides Graph as basic data type and ways to add nodes
and edges and do all sorts of things, including visualize

https://networkx.github.io/documentation/networkx-2.3/tutorial.html

Simple graph example

import networkx as nx

g = nx.Graph() #Create an empty graph object

#Add several nodes
g.add_node('Alice')
g.add_node('Bob')
g.add_node('Charlie')

g.number_of_nodes() à 3
g.number_of_edges() à 0

Simple graph example continued

Add a single edge

In [9]: g.add_edge('Alice', 'Bob') # undirected

In [10]: g.number_of_edges()

Out[10]: 1

In [11]: g.nodes()

Out[11]: ['Alice', 'Charlie', 'Bob']

In [12]: g.edges()

Out[12]: EdgeView([('Alice', 'Bob')])

Drawing

n networkx can do simple drawing (working with
matplotlib.pyplot under hood):

nx.draw(g, with_labels='True')

Drawing without node labels

nx.draw(g)

(or, for control freaks or the pedantic)

nx.draw(g, with_labels=False)

Adding a bit to the graph

Add some more edges and nodes g.add_node("David")
g.add_edges_from([("Alice", "Charlie"),

("Alice", "David")])

n add_edges_from is a method whose argument should be list
of pairs of node names, each pair in ()s.

networkx.draw(g) (as updated)

Key graph statistic 1: Degree

n Degree of node = number of neighbors node has
n Range of different degrees discovered in last 20–30 years to

vary with nature of graph.
n networkx has graph method degree that gives us special data

structure easily converted to a dictionary with all degree
information for graph

degrees from networkx

In [5]: d = networkx.degree(g)

In [6]: d

Out[6]: DegreeView({'Alice': 3, 'Bob': 1, 'Charlie': 1,
'David': 1})

In [7]: ddict = dict(d)

In [8]: ddict

Out[8]: {'Alice': 3, 'Bob': 1, 'Charlie': 1, 'David': 1}

Will explain dictionaries shortly; for now: pandas knows them!

networkx degree data à pandas

In [7]: degree_data = pandas.Series(dict(nx.degree(g)))
In [8]: degree_data
Out[8]:
Alice 3
Bob 1
Charlie 1
David 1

n And we know from earlier in semester how to plot graphs from
pandas series: pandas series has method .plot()

Plotting degree data

n We want a histogram: Bar plot where the things on the x-axis
have a specific meaningful order (e.g., numbers), as opposed
to being categorical (e.g., names of justices)

degree_data.plot(kind='hist')

n (Side note: Abbreviation for that. Can write .hist() instead of
.plot(kind='hist')): degree_data.hist()

To make plot of series look nice

n pandas put in stuff automatically for some plots we did earlier
from dataframes, but doesn't always (especially not for
series). If need be:

import matplotlib.pyplot as plt

plt.xlabel('string I want to see below x axis')
plt.ylabel('Similarly for y')
plt.title('String I want up top in title position')

Plot with some appropriate labels

Remember what our graph looks like

Alice

Bob

David

Charlie

Centrality

n Alice is connected to everybody else; Bob, Charlie, and David
are connected only to one node each (Alice)

n Alice is obviously the most central
n Various centrality measures to tell which nodes are most

central
n (Prof. Philip Yu of UIC CS found to be "most central"

computer science author by one such measure)

What is maximum degree of node in graph with n
nodes?
A. n
B. n – 1
C. n – 2
D. n(n – 1) / 2
E. 42

One simple measure of centrality of node

n degree of node / maximum possible degree of any node in
that node's graph

n For n-node graph:
q degree of node / (n - 1)

n networkx will give us (a dictionary of) the centrality of every
node in graph g:

cent = nx.degree_centrality(g)

For our little graph

In [11]: cent = nx.degree_centrality(g)

In [12]: cent
Out[12]:
{'Alice': 1.0, 'Bob': 0.3333333333333333,
'Charlie': 0.3333333333333333,
'David': 0.3333333333333333}

Dictionary à pandas Series

n For some purposes want dictionary format (e.g., look up
degree of a node)
q And dictionaries key storage structure for lots of non-data science

uses; more shortly
n For some analytics, can convert dictionary of degree

centrality form (keys=strings, values=numbers) to
pandas.Series and use pandas to do stuff
q E.g., if I asked you to sort the degrees.

Path lengths

n How many edges do we need to walk over to get from one
node to another?

n 0 to get from node to itself
n 1 to get to immediate neighbor
n > 1 to get to all other nodes

Getting all path lengths

n neworkx has operator for this; gives somewhat complex data
structure back

n pandas to the rescue: It knows how to handle that data
structure and turn it into a dataframe, which we already know
about:

pandas.DataFrame(dict(nx.all_pairs_shortest_path_length
(g)))

All path lengths in our graph

p = pandas.DataFrame(nx.all_pairs_shortest_path_length(g))

>>> p
Alice Bob Charlie David

Alice 0 1 1 1
Bob 1 0 2 2
Charlie 1 2 0 2
David 1 2 2 0

Another stat: Average shortest path length

n networkx will calculate the average over all shortest path
lengths for you:

Get the average path length
print(networkx.average_shortest_path_length(g))
1.5

Our 4 node graph is kinda dull

n Point is to apply these sorts of techniques to e.g., graphs of
various types of social networks with thousands to 1 billion+
nodes

n Our example data (real data):
q nodes = twitter users
q edge = follows relationship (could be directed; could ignore direction)
q ~40,000 pairs of follower, followee
q (This particular bit of twitter formed by technique called snowball

sampling starting at Computational Legal Analytics)

Large networks

n Stored as text files
n One line for each link with line containing names (string or

number) of nodes
q Notice that if we know all the links then we know what the nodes are
q Both comma and space are common delimiters for between the two

nodes of an edge in large network work
q Both are, broadly speaking, CSV

n We'll use pandas to read these in

Reading graphs from files pandas

n (The joys of working with real data! J)
n Can still have encoding issues for, e.g., Chinese node name
n CSV files and csv_read default: rows separated by newlines

and items in rows separated by commas, but can specify item
separator either
q Comma: pandas.read_csv(<filename>)
q Space: pandas.read_csv(<filename>, sep = ' ') # Project?

DRAWING GRAPHS TO DICTIONARIES

n Earlier created and drew graph g on
right

n Whose nodes were Alice, Bob,
Charlie, and David

n nx.draw(g, with_labels='True'))
put node labels on the graph
automatically

Drawing a graph: Node Labels

Introducing Dictionaries: Setting node labels

import networkx as nx

labels_dict = {'Alice':'A', Bob':'B',
'David':'D', 'Charlie':'C'}

nx.draw(g, labels=labels_dict)

would label nodes A, B, C, D.
(Note argument is labels plural)

Introducing Dictionaries: Setting node labels (cont)

labels_dict = {'Alice':'A', 'Bob':'B', 'David':'D',
'Charlie':'C'}

nx.draw_networkx(g, labels=labels_dict)

n In general, dictionary is unordered collection of key-value pairs,
and here key (left) is node's name, value (right of colon) is what
we want printed
q Much more on dictionaries in 2 slides

Other optional arguments to nx.draw

n If labels, can adjust their size with font_size = <number>
q Got larger labels for PowerPoint on earlier slide with font_size=20

n Can also change appearance of nodes, e.g.,
q node_size=8
q node_color="red" # or "r"

n What super power did I use to learn all those parameters?
q Documentation at: https://networkx.github.io/documentation/stable/index.html
q Specifically

https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.nx
_pylab.draw_networkx.html

https://networkx.github.io/documentation/stable/index.html
https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html

DICTIONARIES

Bird Watching

n We want to keep track of how many of each bird we have
seen
q Robin: 3, Pigeon: 45, etc.

n Could use parallel lists

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

Where did I put that darn pigeon?

n Recall list method .index(val) returns first index at which value
val occurs in list but is error if val not in list

n birds.index('pigeon') à 1
n birds.index('chicken) à barf

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

Bird Watching

n We want to keep track of how many of each bird we have
seen
q Robin: 3, Pigeon: 45, etc.

n Could use parallel lists

birds = ['robin', 'pigeon', 'falcon']
counts = [3, 45, 2]

Adding a new bird sighting?

A. counts.append(0)
B. counts.append(1)
C. counts.append(new_bird)
D. No code necessary
E. I don’t know

def new_sighting(birds, counts, new_bird):
"""Manages bird counts using 2 parallel lists"""
if new_bird not in birds:

birds.append(new_bird)
(possible) missing line

ind = birds.index(new_bird)
counts[ind] = counts[ind] + 1

Using Dictionaries

n Only one dictionary
n Instead of looking for index, look up by key

bird_dict = {"robin":3, "pigeon":45, "falcon":3}

def new_sighting(bird_dict, new_bird):
if new_bird not in bird_dict:

bird_dict[new_bird] = 0
bird_dict[new_bird] = bird_dict[new_bird] + 1

Keys and Values

n Keys are immutable
n Values are mutable

n Use d[k] = v to add key k with value v to dictionary d
n If k is already present, its value is overwritten

Dictionaries!

>>> d = {}
>>> D["spam"] = "a health food product"
>>> D[42] = "an important number"
>>> D["bart"] = ["bart@geemail.com", "springfield"]
>>> D
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> D[42]
'an important number'
>>> 42 in D
True
>>> 43 in D
False
>>> "ran" in D
False

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> D[42] = "an important number"
>>> D["bart"] = ["bart@geemail.com", "springfield"]
>>> D
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> D[42]
'an important number'
>>> 42 in D
True
>>> 43 in D
False
>>> "ran" in D
False

the key the value

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]
>>> D
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> D[42]
'an important number'
>>> 42 in D
True
>>> 43 in D
False
>>> "ran" in D
False

the key the value

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]
>>> d
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> D[42]
'an important number'
>>> 42 in D
True
>>> 43 in D
False
>>> "ran" in D
False

the key the value

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]
>>> d
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> d[42]
'an important number'
>>> 42 in D
True
>>> 43 in D
False
>>> "ran" in D
False

the key the value

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]
>>> d
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> d[42]
'an important number'
>>> 42 in d
True
>>> 43 in d
False
>>> "ran" in d
False

the key the value

Dictionaries!

>>> d = {}
>>> d["spam"] = "a health food product"
>>> d[42] = "an important number"
>>> d["bart"] = ["bart@geemail.com", "springfield"]
>>> d
{42: 'an important number', 'bart': ['bart@geemail.com', 'springfield'], 'spam': 'a health food product'}
>>> d[42]
'an important number'
>>> 42 in d
True
>>> 43 in d
False
>>> "ran" in d
False
>>> d["ran"]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
KeyError: 1

the key the value

Python, you
could be a
bit more
polite!

"an important number” in d

A. True
B. False
C. Error

Dictionaries: Keys and Values, types

n Keys can be any immutable type
q int, string, or float

n Values are mutable and can be any type under the sun
q including dictionary

n Dictionary itself is a mutable type:

n Recall d[k] = v overwrites if k was already a key

Getting Values from Dictionaries

n d[k] returns value associated with key k in dictionary d
q If k does not exist, this causes an error

n d.get(k) also returns value associated with key k in
dictionary d
q Returns None if k does not exist
q If a second parameter is included d.get(k, v), then v returned

instead of None if k not found

What is d at the end of this code?

A. {3:4, 5:8, 4:9}
B. {3:4, 5:8, 4:4}
C. {3:4, 5:4, 4:3}
D. Error caused by get
E. None

d = {3:4}
d[5] = d.get(4, 8)
d[4] = d.get(3, 9)

How confident are you of your answer?

A. Very Highly confident: I've got this
B. Very confident
C. Somewhat confident
D. Not so confident: educated guess
E. Not confident at all: random guess and/or bullied into by the

rest of my small group

Keys, Values and Items

n d.keys() returns a dictionary’s keys
n d.values() returns a dictionary’s values
n d.items() returns a dictionary’s key-value pairs

n These are similar to lists, but NOT lists. To turn into a list,
list(d.keys())

n Just as thing returned by range is similar to but not a list, and
thing returned by ur.connect is similar to but not a string

Deleting from a dictionary

n Occasionally need to delete key–value entry from dictionary d
n Python has way to do this:

q del d[key]
q Syntax is a little odd; technically del is operator

Accessing entire dictionary

n for loops can be over dictionaries as well as lists
n loop variable is successive keys

for key in d:
Probably stuff involving value d[k] as well as just k

DEGREE DISTRIBUTIONS

How many close (real world) neighbors

n Estimate number of other people living within 100 feet of
where you sleep at night:

A. 0–7
B. 8–15
C. 16–32
D. 32–64
E. 65+

How many close neighbors

n Estimate highest number of other people living within 100 feet
of bed of anyone in Chicago area not in dorm, prison, military,
or hospital

A. 0–32
B. 32–64
C. 66–125
D. 128–250
E. 250+

