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DEGREE DISTRIBUTIONS



How many close (real world) neighbors

n Estimate number of other people living within 100 feet of 
where you sleep at night: 

A. 0–7
B. 8–15 We got a Bell curve with peak here
C. 16–32
D. 32–64
E. 65+



How many close neighbors

n Estimate highest number of other people living within 100 feet 
of bed of anyone in Chicago area not in dorm, prison, military, 
or hospital

A. 0–32
B. 32–64
C. 66–125 (Most people thought this or less)
D. 128–250
E. 250+



How many FB friends?

n Estimate your number of FB friends (or followers if larger)
A. 0–200
B. 200–400
C. 400–800
D. 800–2000
E. 2000+



Maximum number FB followers?

n Estimate maximum number of followers of most followed 
person on FB? 

A. 5000
B. 50,000
C. 500,000
D. 5,000,000
E. 50,000,000



Ronaldo, Shakira

n Vin Diesel has about 97 million followers
n Shakira has about 101 million followers
n Cristiano Ronaldo has about 122 million followers



Power law degree distributions

n # of followers does not approximate classic bell 
curve distribution of
q Heights of Homo sapiens
q Times of runners
q Number of real-world neighbors
q Perhaps: Number of FB friends of people in this class? 

n Compare Ronaldo's FB followers to human 
height: No 50-foot tall (much less 50 mile tall) 
outliers!



DEGREE DISTRIBUTION PLOTS (FOR 
PROJECT)



Power law degree graphs 

n Such as social network graphs
n Have very large number of low-degree nodes, and very small 

(but nonzero!) number of extremely high degree nodes
n Taking logs can help us view things that are very big
n Will see in lab: count (y) vs. log of degree (x) still hard to see
n Really see something with log vs. log (referred to as "log log")



Log log plot of our twitter data



The code

degree_data = pandas.Series(dict(networkx.degree(g)))
log_degree = numpy.log10(degree_data)

log_degree.plot(kind='hist', log=True)
plt.title("Log Log Histogram of Degree Distribution")
plt.xlabel("Log 10 of Degree")
plt.ylabel("Count")



Questions on social networks assignment?



PANDAS FILE READING ISSUE 
RELEVANT TO SOME GRAPH CSV FILES 
FROM REPOSITORY



Headers and comments up top

n Some graph files start with comments starting with # up top
n And also can have row of column headers.
n Pandas default assumption: 1 row headers, no comments 
n Say first 4 lines start with #. Can tell pandas either

1. Start reading at Python Line 3 (0, 1, 2, 3) as header with:
n header=3

2. or comment='#', header=None
n file name string type argument okay with either; fileref only 

with 1!
n Or okay to edit file by hand to remove row



pandas read_csv

n Suggestion: use file name version of pd.read_csv
n header: Gives line number to treat as line containing headers, 

counting lines Pythonically as 0, 1, 2, 3, …
q Reads headers from that line; skips earlier lines; reads data from 

next line
n comment: character for comment to end of line; all are 

ignored
q Next line after comment always taken as header

n If it's data must specify header=None



NESTED LISTS



B = [[1,2,3], [5,10,20]]
print(B[1])

Clicker
A 2
B [1,2,3]
C [5,10,20]
D This will cause an error
E I don’t know

This will print



How confident are you of your answer?

A. Very Highly confident: I've got this 
B. Very confident
C. Somewhat confident
D. Not so confident: educated guess
E. Not confident at all: random guess and/or bullied into by the 

rest of my small group



Matrix

n Famous 1999 Fantasy/Action movie about Neo and the 
elusive Morpheus

n Way some students believe that they can learn Computer 
Science: By plugging themselves into it



Matrix

n Famous 1999 Fantasy/Action movie about Neo and the 
elusive Morpheus

n Way some students believe that they can learn Computer 
Science: By plugging themselves into it

n Rectangular array of (usually) numbers, e.g.,



Matrices in Python

n Two common ways to represent:
q For us: For m-by-n matrix, list of m lists, where each inner nested list 

is of same length (n) and represents one row
q (Can also use numpy module)



Creating nested list

n Literal notation:

matrix = [
[5, 10, 15, 20, 25],    
[30, 35, 40, 45, 50],
[55, 60, 65, 70, 75],
[80, 85, 90, 95, 100],
[105, 110, 115, 120, 125]

]



Building up nested list

n Create distinct list of desired row or row of 0s to change later for 
each row append in:

matrix = [ ]
for row in range(number_rows):

new_row = [ ]
for col in range(number_cols):

new_row.append(0) #if starting all-0
matrix.append(new_row)



Useful function 

def make_0array(nrows, ncols):
'''returns new nrows x ncols 2-d list/array of all 0s'''

array = [ ] # Build up array of numbers here

for j in range(nrows):
new_blank_row = [ ]       # Make a NEW row
for i in range(ncols):

new_blank_row.append(0)
array.append(new_blank_row)

return array



print function: staying on one line (review)

n print() function by default always ends with newline. 
q Not nice to print 2-D m x n array 1 number/line using m*n lines; want 

whole row per line
n print() has optional argument end= that can give alternate 

character to put at end instead of newline; e.g., a space:
q print (something, end=' ')



def nice_print(A):
for i in range(len(A)):

for j in range(len(A[i])):
print(A[i][j], end=" ")

print()

A = [[2,5,10],[1,17,0]]
nice_print(A)

Clicker
A 2 5 10

1 17 0
B 2 1

17 5
0 10

C 2 5
10 1
17 0

D This will cause an error
E I don’t know

This will print



How confident are you of your answer?

A. Very Highly confident: I've got this 
B. Very confident
C. Somewhat confident
D. Not so confident: educated guess
E. Not confident at all: random guess and/or bullied into by the 

rest of my small group



def col_print(A):
for i in range(len(A)):

for j in range(len(A[i])):
print(A[j][i], end=" ")

print()

A = [[2,5,10],[1,17,0]]
col_print(A)

Clicker
A 2 5 10

1 17 0
B 2 1

17 5
0 10

C 2 5
10 1
17 0

D This will cause an error
E I don’t know

This will print



Predictive Policing



Contagion Networks

n Viruses spread by contagion over a network of connections.
n Other things spread that way too. 
n Chicago’s predictive policing program sees crime as 

spreading by contagion over networks.
n To predict how things spread, you need to know:

q Transmission principles—e. g., the virus spreads by contact. 
q The structure of the network.



Very Simple Crime Contagion Example

n Transmission principles:
q There is one node with a criminal past—”infected” with crime.

n In the following example, the initial infected node is Bieber, in yellow.
q Neighbors of infected nodes become infected unless they are 

immune.
n In the example, Alice and Ernest are the initial immune node, in blue.

q Some nodes are immune—cannot be infected by an infected 
neighbor. 
n A node with only immune neighbors becomes immune.



First Example

Yellow (Bieber) = 
initial infected 
node

Red = infected

Blue = immune

Alice and Ernest 
are the initial 
immune nodes. 



Second Example
Changing the structure 
changes how the contagion 
spreads

To draw a network like this:

import networkx as nx

pos = nx.circular_layout(g)
pos = nx.spring_layout (g, pos=pos)
nx.draw_networkx(g, pos=pos)



Transmission Matters Greatly in Predictive Policing

n We have just seen that structure matters. 

n But our theory of transmission is far too simple to be a model 
of how crime really spreads. 



Chicago’s System
n The Chicago Police’s Strategic Subject List algorithm 

q creates “a risk assessment score known as the Strategic Subject List 
or ‘SSL.’  Scores “an individual’s probability of being involved in a 
shooting incident either as a victim or an offender.”

n How do they do this? 
q Not disclosed. But they use a lot of data of various sorts (e. g. social 

media posts). 
q A reasonable guess: 

n create profiles for “infected,” “susceptible,” and “immune” (all 
probabilistic). 

n Use network structure and the profiles to generate a score.  



The Network Structure

n Uses information about arrests “contained within the CPD 
data warehouse.” 

n From that, the algorithm constructs “social networks . . . to 
previous homicide victims to predict the likelihood of someone 
becoming a victim of a homicide.”

n The network is a “co-arrest” network.



A Co-Arrest Network



Co-Arrests

n Generally: co-arrested = arrested together
n Chicago—Two types:

q X and Y arrested together, Y is murdered later.
n “A first degree link refers to a relationship between a subject and an individual 

with whom the subject was previously co-arrested who later became a 
homicide victim.” 

q “X and Y arrested together, and Y later arrested with the murder 
victim Z. 
n A second degree link refers to a relationship in which a subject was co-

arrested with another person who, in turn, was co-arrested with a later 
homicide victim.”



The Underlying Theory
n The more connections you have to co-arrested individuals the more 

likely you will commit a violent crime or be a victim of one.
n “A series of research studies found that gun violence—just like an 

infectious disease—can be transmitted from person to person in 
social networks: 
q i.e., exposure to gun violence not only can lead to a host of 

negative psychological and cognitive outcomes but also increases 
the risk of individuals becoming gunshot victims themselves. 

q Furthermore, individuals who associate with a greater number of 
gunshot victims are at an extremely elevated risk of being victims 
themselves.”

q Papachristos and Michael Sierra-Arévalo, Policing the Connected World


