
We will be using data from the Supreme Court Database available at: http://scdb.wustl.edu/index.php

The first file we want (MODERN Database: 2019 Release 01, Justice Centered Data, Cases Organized by
Supreme Court Citation, CSV file type) is at:

http://scdb.wustl.edu/_brickFiles/2019_01/SCDB_2019_01_justiceCentered_Citation.csv.zip

(Post to Piazza or visit any TA or lab tutor if you don't know how to unzip a zip file.)

Good practice to put all modules you're using at top of code.

We will be using (at least):

the open-source Python Data Analysis Library pandas (http://pandas.pydata.org/)
the standard Python plotting library, matplotlib.pyplot

So at top of your Python file (if working in a file) or at console before anything else, let's put

import pandas
import matplotlib.pyplot as plt

marp: true

Working with the Supreme Court Database
UIC CS 111 Law, October 2019

Profs. Bob Sloan and Richard Warner

Primary author orignal version: Dr. Daniel M. Katz

Downloading Data

Importing modules

http://scdb.wustl.edu/index.php
http://scdb.wustl.edu/_brickFiles/2019_01/SCDB_2019_01_justiceCentered_Citation.csv.zip
http://pandas.pydata.org/


Open as usual, except file's characters in relatively rare ISO-8859-1 encoding, not Python's default of ASCII or
UTF-8 Unicode:

fileref = open('SCDB_2019_01_justiceCentered_Citation.csv', 
                encoding='ISO-8859-1')

Could use readlines (or other methods) with fileref as usual, but we'd like to

exploit the CSV format, and
do data analytics with pandas, so

# Read from file with pandas preparing to exploit csv format
scdb = pandas.read_csv(fileref)

For encoding lovers: Recall ISO-8859-1 1-byte-only encoding for a 256 character subset of Unicode,
sufficient for alphabets of Western European Languages, English, and some common non-ASCII symbols,
including cent sign, Pound sign, Yen sign, and section symbol §. (Supreme Court DB and lots of legal writing
uses §.)

CSV = Comman Separated Values: Text format for Excel style data. Adjacent cells separated by commas;
rows separated by newlines.

Universal format for sharing data files for data science.

Python has standard built-in module that helps with CSV, and so does Pandas.

Maybe more about details later in semester; don't need more for now.

Data dimensions:

Loading data into Python from file

Some CS: Data Representations

First Look at the Data



>>> print(scdb.shape)

(78233, 61)

>>> scdb.head()
     caseId     docketId    caseIssuesId                voteId dateDecision  \
0  1946-001  1946-001-01  1946-001-01-01  1946-001-01-01-01-01   11/18/1946   
1  1946-001  1946-001-01  1946-001-01-01  1946-001-01-01-01-02   11/18/1946   
2  1946-001  1946-001-01  1946-001-01-01  1946-001-01-01-01-03   11/18/1946   
3  1946-001  1946-001-01  1946-001-01-01  1946-001-01-01-01-04   11/18/1946   
4  1946-001  1946-001-01  1946-001-01-01  1946-001-01-01-01-05   11/18/1946   

<deleting some so it will fit on one slide>   

        ...         majVotes  minVotes justice   justiceName vote opinion  \
0       ...                8         1      86      HHBurton  2.0     1.0   
1       ...                8         1      84     RHJackson  1.0     1.0   
2       ...                8         1      81     WODouglas  1.0     1.0   
3       ...                8         1      80  FFrankfurter  4.0     2.0   
4       ...                8         1      79        SFReed  1.0     1.0   
<deleting more because it goes on>

[5 rows x 61 columns]
>>> 

Last 5 rows:

scdb.tail()

A specific row:

First 5 rows:

More selecting subsets of rows



>>> scdb.loc[10]
caseId                                        1946-002
docketId                                   1946-002-01
caseIssuesId                            1946-002-01-01
...
chief                                           Vinson
docket                                              12
caseName                    CLEVELAND v. UNITED STATES
...
justiceName                                  RHJackson
vote                                                 2
...

"Matplotlib is a Python 2D plotting library which produces publication quality figures in a variety of hardcopy
formats and interactive environments across platforms. Matplotlib can be used in Python scripts, the Python
and IPython shells, the Jupyter notebook, web application servers, and four graphical user interface toolkits. ...

For simple plotting the pyplot module provides a MATLAB-like interface, particularly when combined with
IPython." http://matplotlib.org/

(The Spyder console is an IPython shell.)

Learn More: http://matplotlib.org/

Let's plot the number of decisions by Justice in alphabetical order

In [1]: f = plt.figure(figsize=(11,8))  #  11 x 8 inch fig.
In [2]: scdb.groupby("justiceName")["docketId"].count().plot(
                        kind="bar")
Out[2]:                   
<matplotlib.axes._subplots.AxesSubplot object at 0x11773dc18>

Visualizing Data: matplotlib

How Many Decisions Did Each Justice Participate
in?

http://matplotlib.org/
http://matplotlib.org/


We can try to change the groupby from "justiceName"" to "chief"

f = plt.figure(figsize=(6,6))       # A little smaller
scdb.groupby('chief')['docketId'].count().plot(kind='bar')

What About Chief Justices Only?

Chiefs?



Always be checking (your outputs)

Look carefully at that graph and compare to earlier graph with all justices. It's not really what we want, is it?

The numbers are a bit off.

To get the number of decisions for each chief justice, we need to use .nunique rather than .count.

Data Science ABC



f = plt.figure(figsize=(6,6))
scdb.groupby('chief')['docketId'].nunique().plot(kind='bar')

Correct graph for Chief Justices

What are we counting?



Why do we use .count() for the number of decisions by each justice, but .nunique() for the number of decisions
by each chief justice?

Let's take a closer look at the data to see what is going on

>>> scdb_peek = scdb.loc[0:20, 
            {'docketId', 'chief', 'justiceName'}]
>>> scdb_peek
     justiceName   chief     docketId
0       HHBurton  Vinson  1946-001-01
1      RHJackson  Vinson  1946-001-01
2      WODouglas  Vinson  1946-001-01
3   FFrankfurter  Vinson  1946-001-01
4         SFReed  Vinson  1946-001-01
5        HLBlack  Vinson  1946-001-01
6     WBRutledge  Vinson  1946-001-01
7        FMurphy  Vinson  1946-001-01
8       FMVinson  Vinson  1946-001-01
9       HHBurton  Vinson  1946-002-01
10     RHJackson  Vinson  1946-002-01
11     WODouglas  Vinson  1946-002-01
12  FFrankfurter  Vinson  1946-002-01
13        SFReed  Vinson  1946-002-01
14       HLBlack  Vinson  1946-002-01
15    WBRutledge  Vinson  1946-002-01
16       FMurphy  Vinson  1946-002-01
17      FMVinson  Vinson  1946-002-01
18      HHBurton  Vinson  1946-003-01
19     RHJackson  Vinson  1946-003-01
20     WODouglas  Vinson  1946-003-01

The first two dockets ("1946-001-01" and "1946-002-01") each have 9 rows (or records in data science speak).

Each row or record represents a vote by the identified justiceName and each justice votes only once per
docketId.

The "chief" column represents the Chief Justice for the given docketId and there is only one chief per docketId.

Thus, when we counted the number of rows for each Chief Justice we were counting the number of votes cast

What's going on with the SC DB



for all the docketId's that each Chief Justice presided over, including their own vote, giving us the number of
decisions rendered by each Chief Justice * approx. 9

".count()" gives us the number of rows for each chief. This is the plot above that was incorrect:

>>> scdb.groupby('chief')['docketId'].count()
chief
Burger       25094
Rehnquist    18358
Roberts       9774
Vinson        7307
Warren       19736
Name: docketId, dtype: int64

".nunique()" gives us the number of unique docketId's for each chief, rather than the number of rows.

>>> scdb.groupby('chief')['docketId'].nunique()
chief
Burger       2809
Rehnquist    2044
Roberts      1096
Vinson        812
Warren       2205
Name: docketId, dtype: int64

Let's run the count and nunique figures by justiceName to compare.

Display only the last 5 rows which contain two justices that were chief justices (Burger and Rehnquist) so we
can easily compare the results.

count()

nunique()

Direct comparison



justice_count = scdb.groupby('justiceName')['docketId'].count()
>>> justice_count.tail()
justiceName
WBRutledge      387
WEBurger       2807
WHRehnquist    4529
WJBrennan      5325
WODouglas      4001
Name: docketId, dtype: int64

Unlike chief, grouping by justiceName gives us the same result for .count and .nunique because each row
represents a justice's vote and each justice only votes once per docketId.

Hopefully you now understand the scdb data structure well enough that you see why
scdb.groupby('chief')['docketId'].nunique().plot(kind='bar')

gave the proper plot above.

#The 2010 Term
scdb_subset = scdb[scdb.term == 2010]

#Terms 2010 to current: Let's use this one
scdb_subset = scdb[scdb.term >= 2010]

Since the 2010 term, how many cases (caseId) has the court reviewed?

justiceName

What if we were only interested in cases from
certain terms?

Data Exploration - Descriptive Statistics



# We use "nunique" rather than "count" because our data 
# has 1 row for each voting Justice (usually 9 per case) but
#  we want to know the number of distinct caseId's, not rows.
>>> scdb_subset.caseId.nunique()
684

# See the difference with count?
>>> scdb_subset.caseId.count()
6068

How many cases for each term from 2010 on?

>>> scdb_subset.groupby('term').caseId.nunique()
term
2010    84
2011    77
2012    79
2013    75
2014    70
2015    81
2016    69
2017    76
2018    73
Name: caseId, dtype: int64

What is the average number of cases per term?

>>> scdb_subset.groupby('term').caseId.nunique().mean()
76.0

Data Exploration - Descriptive Statistics (cont.)

Data Exploration - Descriptive Statistics (cont.)

Data Exploration - Bar Plots again



Visualize the number of cases for each term

#Plot the number of cases for each term
f = plt.figure(figsize=(8,6))
scdb_subset.groupby('term')['caseId'].nunique().plot(
                        kind="bar")

Since the 2000 term, see how many times each justice has voted for the dissent and majority.

And just to demo it, we'll do the subset of the terms inline

Subsetting Data again, this time inline



f = plt.figure(figsize=(11,7))
scdb[scdb.term >= 2000].groupby(['justiceName', 'majority'])[
            'caseId'].nunique().plot(kind="bar")

The names of the Justices ran off bottom of page in that plot!
Because some of Justices' names are so long
Happens sometimes
Fix is: tight_layout()

f = plt.figure(figsize=(11,7))
scdb[scdb.term >= 2000].groupby(['justiceName', 'majority'])[
            'caseId'].nunique().plot(kind="bar")
f.tight_layout()

Problem with Some Plots Including Last One



1. Create the subset of all cases from the 2000 term to the most recently completed term (i.e., the end of
what is in the database) to use for problems 2 and 3

2. Calculate and plot the number of cases for each term
3. For each justice, calculate and plot the number of votes in each "direction" (total, not by term)
4. Download Case centered data from the Supreme Court Database site. It has cases organized by

Supreme Court decision. Restrict to cases from the 2006-2018 terms for problems 5 and 6
5. Calculate and plot the number of cases for each caseDisposition type
6. Create and briefly describe your own plot

First, let's create a subset called "scdb_subset" with the first 3 columns

Assignment (Project)

Renaming Columns



scdb_subset = scdb.iloc[:,0:3]
scdb_subset.head()
>>> scdb_subset.head()
     caseId     docketId    caseIssuesId
0  1946-001  1946-001-01  1946-001-01-01
1  1946-001  1946-001-01  1946-001-01-01
2  1946-001  1946-001-01  1946-001-01-01
3  1946-001  1946-001-01  1946-001-01-01
4  1946-001  1946-001-01  1946-001-01-01

scdb_subset.rename(columns = {'caseId': 'case_Identifier'}, 
                    inplace = True)
                    
>>> scdb_subset.head()
  case_Identifier     docketId    caseIssuesId
0        1946-001  1946-001-01  1946-001-01-01
1        1946-001  1946-001-01  1946-001-01-01
2        1946-001  1946-001-01  1946-001-01-01
3        1946-001  1946-001-01  1946-001-01-01
4        1946-001  1946-001-01  1946-001-01-01

scdb_subset.columns = ['case_identifier', 'docket_identifier', 
            'caseIssues_identifier']
            
            
>>> scdb_subset.head()
  case_identifier docket_identifier caseIssues_identifier
0        1946-001       1946-001-01        1946-001-01-01
1        1946-001       1946-001-01        1946-001-01-01
2        1946-001       1946-001-01        1946-001-01-01
3        1946-001       1946-001-01        1946-001-01-01
4        1946-001       1946-001-01        1946-001-01-01

Rename a specific column

Rename all columns:


