
CS 111: Program Design I
Lecture 15: More Pandas, Misc., Legal
Analytics

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
October 17, 2019

Pandas: Brief demo in Spyder

n Showing a couple of the graphs from the previous lecture

PANDAS: USER MANUAL STYLE

Resource

n Python for Data Science Pandas Cheat Sheet
n https://www.datacamp.com/community/blog/python-pandas-

cheat-sheet

https://www.datacamp.com/community/blog/python-pandas-cheat-sheet

Pandas data types

n Most important: dataframe, which we are getting from
pandas.read_csv()
q 2-d array, with column headers

n Series: 1-d array, e.g., one column of a dataframe, second
most important

Dataframe Indexing: General idea overview

A B C
0 1 2 3
1 4 5 6
2 7 8 9

n Idea is [row][col]
n .iloc with (only) numbers

("integer location")
q To get the (red) 1:

n df.iloc[0][0]

n .loc with labels/column
headers, possibly mixed with
numbers
q To get the 1:

n df.loc[0]['A']

Sample 3 x 3 dataframe df:

Dataframe indexing: Columns

n frame[columnname] returns series from column with name
columnname

n Giving the []s list of names selects those columns in list's
order. E.g.,
q scdb[['justiceName','chief','docketID']]

n Other indexing: .iloc, .loc
q (also others we won't cover)

n Special case: specifically a slice index to whole frame will slice by rows for
convenience because it's a very common operation, but inconsistent with overall
Pandas syntax

Dataframe positional slicing: iloc

n .iloc for 100% positional indexing and slicing with usual
Python 0 to length – 1 numbering (stands for "integer
location")

n Arguments for both dimensions separated by comma [rows,
cols]:
q frame.iloc[:3, :4] upper left 3 rows/4 cols
q frame.iloc[:, :3] all rows, first 3 cols

n One argument: rows (possibly counterintuitive)

q frame.iloc[3:6] second 3 rows
q frame.iloc[41] 42nd row

Dataframe label indexing: .loc

n Use .loc to access by labels, or mix of labels and ints
q selection list will put columns in list's order; selection set in {}s keeps

original dataframe order
q scdb.loc[3:6, {'docketId', 'chief', 'justiceName'}]

n Rows 3 through 6 inclusive, columns in scdb's order
q scdb.loc[3:6, ['docketId', 'chief', 'justiceName']]

n Rows 3 through 6 inclusive, columns in order ['docketId', 'chief', 'justiceName']

n Notice loc uses slices inclusive of both ends, unlike all rest of
Python & Pandas (!)

n .loc with only numerical slices: error (e.g., foo.loc[3:6, 2:4])

Dataframe and series methods

n head(): returns sub-dataframe (top rows)
q or for series, first entries

n tail(): same, bottom rows
q With no argument they default to 5 rows; can give positive integer

argument for number of rows
n count(): For series, returns number of values (excluding

missing, NaN, etc.), does include repetitions
q For dataframe, returns series, with count of each column, labeled by

column
n .nunique(): For series: does not include repetitions

Dataframe and series methods (cont.)

n abs, max, mean, median, min, mode, sum
q All behave like count, except will give errors if data types don't

support the operation
q E.g., a series of strings does return good answer with .max() method

(based on alphabetical order), but cannot take .median()

plotting

n Both DataFrame and Series have a plot() method (as do
many other Pandas types)

n Must have loaded Python's plotting module, because Pandas
is making use of it:

import matplotlib.pyplot as plt

n Default is Series makes a line graph; DataFrame makes one line
graph per column, and labels each line by column labels

100% Optional: Aside for graph geeks

n Optional for fun: To change style of your plot:

import matplotlib
matplotlib.style.use('fivethirtyeight') # OR
matplotlib.style.use('ggplot') # R style

n Out of the box, it's Matlab style, which some folks like a lot

pandas dataframe .plot() method

n Needs no arguments
n Has optional arguments including kind:

q .plot(kind='bar') for bar graphs
q Many others including

n 'hist' for histogram
n 'box' for box with whiskers
n 'area' for stacked area plots
n 'scatter' for scatter plots
n 'pie' for pie charts

.plot() x and y arguments

n If you have dataframe but want one column as x values and
one as y values, can use optional argument(s)

n df.plot(x='Year')
q Plot all columns except 'Year' as line graphs against x being the Year

column

Brief demo: Chi murder rate by year

import matplotlib.pyplot as plt
import pandas

f = open('Chicago murders to 2012HeaderRows.csv', 'r')
df = pandas.read_csv(f)

#Note to self: Look in this semester CS 111 Law SCDB

.groupby(label) method

n Idea: split dataframe into groups that all have same value in
column named label. E.g.,
q grouped = scdb.groupby('justiceName')
q grouped has many of same methods, indexing options as a

dataframe
q grouped.count() à dataframe with 60 columns (all but justice name)

and 1 row per justiceName
q grouped['docketID'] selects out that column
q we plotted grouped['docketId'].count()

n groupby type objects have a plot() method

A series and series groupby method

n nunique() is a method of true series, where it returns number
of distinct values in the series (a number)

n nunique() is also a method of series-like groupby objects,
where it returns actual series: How many were in each group.

POTPOURRI: FILES, LOOPS

File Open: Not needed for pandas!

fileref = open('SCDB_2019_01_justiceCentered_Citation.csv',

encoding='ISO-8859-1')

Read from file with pandas preparing to exploit csv format

scdb = pandas.read_csv(fileref)

Could instead be simply:

scdb pandas.read_csv('SCDB_2019_01_justiceCentered_Citation.csv',

encoding='ISO-8859-1')

But wanted to get file opening idea across; more files soon

while vs. for

Which of the following is true?

A. We can always rewrite any for loop using while construct
B. We can always rewrite any while loop using for construct
C. if for and while would both work, for usually cleaner/clearer
D. A and B
E. A and C

for to while conversion: range of numbers

for i in range(a, b, c):
do stuff with i

i = a
while i < b:

do stuff with i
i += c

wonder if this is true
if a > b …

for to while conversion: general sequnce

for i in seq:
do stuff with i

seq could be any string
seq could be any list

index = 0
while index < len(seq):

i = seq[index]
do stuff with i
index += 1

for for's a jolly good construct

n Generally prefer for in cases where it will do the job
q Easier for human reader to understand
q Don't have to do work of initializing loop variable
q Don't have to remember to correctly increment loop variable

n In particular, use for for:
q Doing things fixed number of iterations when you can figure out that

fixed number before start of loop
q To access each element of a container (e.g., list) or of a string

