
CS 111: Program Design I
Lecture 18: List methods; Starting Networks, Web, and
getting text from the Web in Python

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
October 19, 2019

Key list methods

n ls.append(item): add item to end of ls
n ls.pop(): remove and return element at end of ls
n ls.pop(i): remove and return element at index i in ls
n ls.remove(item): remove first occurrence of item from ls
n ls.insert(i, item): insert item into ls at position i

q sliding elements of ls[i:] all one position right to make room
n ls.sort(): Move elements of ls so that ls is in sorted order

q Requires all elements to be comparable

n All those methods modify ls
n Only pop among those methods has a return value

What is value of a after code runs?

a = ['a', 'b', 'c', 'd']
a.remove('b')
a.pop(2)

A. ['a', 'b']
B. ['c', 'd']
C. ['a', 'c']
D. ['a', 'd']
E. Nothing; code generates

an error

What is value of a after code runs?

a = ['a', 'b', 'c', 'd']
a.remove('b')
a.pop(2)

A. ['a', 'b']
B. ['c', 'd']
C. ['a', 'c']
D. ['a', 'd']
E. Nothing; code generates

an error

What is value of a after code runs?

a = ['a', 'b', 'c', 'd']
a.pop(2)
a.remove('b')

A. ['a', 'b']
B. ['c', 'd']
C. ['a', 'c']
D. ['a', 'd']
E. Nothing; code generates

an error

What is value of a after code runs?

a = ['a', 'b', 'c', 'd']
a.pop(2)
a.remove('b')

A. ['a', 'b']
B. ['c', 'd']
C. ['a', 'c']
D. ['a', 'd']
E. Nothing; code generates

an error

x == y?

x = ['a', 'b', 'c', 'd']
y = x.pop()
y == x

a. True
b. False

What is value of a after code runs?

a = ['a', 'b', 'c', 'd']
a.insert (4, 'e')
a.append (‘e’)
a.pop()
a.remove (‘e’)

A. ['a', 'b', 'c', 'd']
B. []
C. This code gives an

error
D. ['a', 'b', 'c', 'd',

'e']
E. ['b', 'c', 'd', 'e']

What values of a, b, c after code runs?

n a = ['c', 'd', 'a', 'b']
n a.sort()
n b = [20, 5, 32, 1]
n b.sort()
n c = ['c', 'd', 32, 1]
n c.sort()

n Are the values :
a = ['a', 'b', 'c', 'd']
b = [1, 5, 20, 32]
c = [1, 32, 'c', 'd']

a. Yes
b. No, other values
c. No, code gives error

Winter is coming

Winter Midterm 2 is coming

n 1 week from Thursday
n Thu., Nov. 7

n Broadly similar to Midterm 1
n Comprehensive, but heavily

weighted to material since last
midterm

n Mildly more points on legal
material than Midterm 1

COMPUTER NETWORKS, INTERNET,
AND ACCESS IN PYTHON

Goals

n Learn about Internet
n Learn about how to access Internet directly from Python

Program
n Use this knowledge plus all we've learned about lists to finish

web crawler
n Don’t violate CFAA!

Opening a URL and reading it

n The 60 second "standing on one foot" version so you can do
any basic crawler lab or project

import urllib.request as ur

connection = ur.urlopen("https://www.cs.uic.edu")
content = connection.read()
connection.close()

https://www.cs.uic.edu/

Networks: 2 or more computers communicating

n Networks formed when distinct computers communicate via
some mechanism
q Inside one computer: 0/1 voltages
q Almost never on network: too hard to make work over distance
q More commonly frequency

n In 2019 usually not sound frequency, but modems in the dialup internet era did
indeed use sound

Networks everywhere

n All non-ancient cars
q Modern car is collection of computers–Controlling air flow, gas

flow, making airbags work–that communicate, and happen to
have 4 wheels attached. J

n Likewise planes
n (Almost?) all of you have a network in your home or dorm

Networks organized in layers

n Recurring theme throughout Computer Science: Recall
hierarchical decomposition

n For networks, bottom level is physical substrate
q What are signals being passed on? Radio? Wire?

n Middle levels: How data is encoded
q Frequencies of sound waves or radio waves or ??? for encoding 0's

and 1's
q Transmit bit at a time? Byte at a time? Larger packets of bytes?

Higher levels of networks

n Protocol of communication
q How do I address a particular computer I want to talk to? Or

many computers?
q How do I tell a computer that I want to talk to it? That I'm

starting to send it data? What it's supposed to do with the data I
send it? When we're done?

Internet: Collection of networks

n Internet: network of networks
n Inside your home, probably have local network so your

computers can talk to one another
q Likely uses wireless base station
q You can probably reach printers and/or copy files between your

computers
n And you connect your home network (via an Internet Service

Provider (ISP)) to global internet
n So your home network part of Internet

Internet based on agreements on encodings

n Internet built on set of agreements about
q How computers addressed

n Set of four 1-byte numbers (IPv4), or eight 2-byte numbers (IPv6). E.g.,
128.248.155.15

n Way of associating these numbers with domain names, like www.uic.edu using
domain name servers

n How computers will communicate
n That data will be split into packets with various pieces in them
n That computers will format their data and talk to one another using TCP/IP

protocol
q How packets are routed around network to find their destination

http://www.uic.edu/

High-level protocols

n All that just lets us pass data back and forth
q What does data say?
q What does data do?

n One of earliest applications (involving 2 high-level protocols) was
email

n Another: File transfer Protocol (FTP) allows computers to move
files between each other
q Defines what one side says to other when copying file over (e.g., "STO

filename") and how file will be encoded
q Not widely used in 2019, but big when I took CS 1

Internet vs. Web? Which is most correct?

A. Internet and (World Wide) Web are very roughly
synonymous

B. The Web is one service of the Internet
C. The Internet is one service of the Web
D. There is only a very loose connection between the

Internet and the Web

Internet is not new

n Internet ≠ web!

n Internet originally set up for military applications
q Feature: Packets still reach their destination even if part is destroyed,

damaged, or censored

n Internet established in 1969 as military research project with four
locations, current key protocol TCP/IP dates to 1975; declared
universal standard for military computing by US DoD in 1982

The Web (Web ≠ Internet!)

n Prof. Sloan heavy user of Internet 1985 onward
n Web, built on top of Internet, only came into being in December 1990,

and was extremely obscure until 1993
n Web is (again) set of agreements, started by Sir Tim Berners-Lee

q On how to refer to everything on Web: URL (Uniform Resource Locator)
q On how to serve documents: HTTP (HyperText Transfer Protocol)
q How documents formatted: HTML (HyperText Markup Language)

Hypertext

n Nonlinear text that links to other text and graphics via links
n You know it well!
n Some limited implementations, e.g., Apple Hypercard, a little

before web, but
q The read a little, click and read some more, then click, then …. use of

hypertext didn't exist when your parents and I were in school

HyperText Transfer Protocol (HTTP)

n HTTP defines very simple protocol for how to exchange
information between computers (on top of internet protocols)

n Defines pieces of the communication
q Web server is waiting for client in listening state
q What resource do you want?
q Where is it?
q Okay, here's the type of thing it is (HTML, JPEG, whatever), and

here it is
n And words the computers say to one another:

q Simple, e.g., "GET", "PUT", and "OK"

Uniform Resource Locators (URLs)

n URLs allow us to reference any material anywhere on Internet
q Strictly speaking, any computer providing a protocol accessible via URL
q Just putting your computer on Internet does not mean that all of your files

are accessible to everyone on Internet

n URLs have four parts:
1. Protocol to use to reach this resource,
2. Domain name of the computer where the resource is,
3. Path on the computer to the resource,
4. And the name of the resource (optional; notion of default file).
q (And optionally after that can be parameters introduced with a ?)

Example URL

n E.g., http://www.cs.uic.edu/CS477 3 parts:
1. Protocol: http (usually http or https)
2. Host name: www.cs.uic.edu
3. Path: /CS477 (location of files on host)

n https://www.cs.uic.edu/~sloan/papers/SloanWhyCS2014.pdf
1. Protocol: https
2. same host name
3. Path: /~sloan/papers
4. Filename: SloanWhyCS2014.pdf

http://www.cs.uic.edu/CS477
https://www.cs.uic.edu/~sloan/papers/SloanWhyCS2014.pdf

Path also optional

n Web servers (programs that understand HTTP protocol)
typically have special directory that they serve from
q Files in that special directory directly reachable without specifying

path

Web browsers are clients

n Your Web browser is called a client accessing a Web server
n Programs like Chrome, Firefox, or Safari understand a lot about

Internet protocols
q They know how to interpret HTML and display it graphically
q If HTML references other resources, like JPEG or PNG pictures,

client fetches them and displays them as appropriate
q Client also knows details of HTTP (and perhaps mailto, ftp, and

some others)

Browser not only way to use Internet

n Python (and other languages) have modules that allow
you to use these protocols
q In Python, can read any URL as if it was a file

n In Python 3, key library is urllib.request
q (Other parts of urllib useful for, e.g., parsing webpage text)

Importing urllib.request

n Advice: If module has dot in its name like urllib.request,
matplotlib.pyplot, always import it as something. Else
Python can get confused about multiple dots when you go
to use functions inside it. Thus:

import urllib.request as ur

Opening a URL and reading it

n The 60 second "standing on one foot" version so you can
write web crawler

import urllib.request as ur

connection = ur.urlopen('https://www.cs.uic.edu')
content = connection.read()
connection.close()

https://www.cs.uic.edu/

Status

n connection returned from urllib is a "HTTPResponse" object and
has a status attribute, which should be 200 if all went well

n In crawling, if you run into difficulties, try:

import urllib.request as ur
connection= ur.urlopen('https://www.cs.uic.edu')
if (connection.status == 200):

content = connection.read()
<rest of real work here>

connection.close()

https://www.cs.uic.edu/

Reading the connection

n read() method of connection works just like read() method
of files
q Almost: this read will give you a sequence of bytes, which can in

many but not all cases be treated as a string. Can force it to be
100% string instead of merely pretty string-like by

q content = str(connection.read())
n using type conversion function str()

WEB CRAWLER AGAIN

Two bits of useful Python syntax

n Don't need either one the web crawler but will make it a
bit prettier:
q break
q list as condition for if or while

Break

n Causes immediate termination of innermost enclosing
while or for loop

n Typical usage:

We are inside a while or for
if <some particular case>:

break

n Use carefully! Can make code very hard to read

Example

for n in range(2, 10):
for x in range(2, n):

if n % x == 0:
print(n, 'equals', x, '*', n//x)
break

else:
loop fell through without finding factor
print(n, 'is a prime number')

while (x%2 == 1 and x%3 == 0):
x = 9

while True:
if (x%2 == 1 and x%3 == 0):

break
x = 9

Which of these will exit when x is initially 9?

A

B

C. Both D. Neither E. I don’t know

Continue

n Continue continues with next iteration of loop instead of
finishing current iteration

Continue example

for num in range(2, 6):
if num % 2 == 0:

print("Found an even number", num)
continue

print("Found a number", num)

n Found an even number 2
n Found a number 3
n Found an even number 4
n Found a number 5

