
CS 111: Program Design I
Lecture 17: Lists, List memory model, List Methods,
function variables, Web crawler law

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
Thursday, October 24, 2019

LISTS

Next big project: Finish Web Crawler

n We will need to make more extensive use of lists than we
have up until now

n Recall our strategy something like

Crawl all pages reachable from start

n List of pages to visit, initially start
n while that list is not empty:

q Take a page from the list
q Get its text # need to learn how to do this
q remove that page from to-visit list, add it to already-visited list
q Get all the links in that page
q for each link

n if not in already-visited list
n add it to to-visit list

And besides

n Lists in Python are just awesome

Recall

n Lists are data structures that let us store collections of data in
sequence with indices

A = [2, 3, 5]
B = ['Brennan']
C = A + B

print(C) will result in:

A. [2, 3, 5]
B. [2, 3, 5, 'Brennan']
C. ['2', '3', '5', 'Brennan']
D. This will cause an error
E. I don’t know

Remember the smallest

n '' # Empty string, could also be written ""

n [] # empty list

List Functions

n Not methods; there are also list methods, e.g., append

n len: length of list (i.e., number of elements)

n + will concatenate lists

n min, max: minimum or maximum of list

n sum: sum of the elements in the list
q E.g., sum([2, 3, 5]) à 10

Important: Lists are mutable

>>> years= [1788, 1800, 1860, 1932]
>>> years[0] = years[0] + 4
>>> print(years)
[1792, 1800, 1860, 1932]

Lists versus Strings

List String
Elements can be any
type

Elements are
characters

Mutable Immutable
Heterogeneous
elements

Homogenous
elements

Can be nested in
other lists

What is printed

lst = ['abc.com', 'cnn.com', 'msnbc.com']
lst[1] = 'fox.com'
print(len(lst))

A. 3
B. 4
C. 23
D. 30
E. No output; error in 2nd line of code

What is printed

lst = ['abc.com', 'cnn.com', 'msnbc.com']
lst[1] = 'fox.com'
now lst has become ['abc.com', 'fox.com', 'msnbc.com']
print(len(lst))

A. 3
B. 4
C. 23
D. 30
E. No output; error in 2nd line of code

Reminder: Compound (assignment) operators

n Reminder that Python has compound
operators +=, -=, *=, /=, and %=

n Does the operation and then assigns
n age += 1 # is shorthand for
n age = age + 1
n fun *= 2 # is shorthand for
n fun = fun * 2
n N.B.: Variable on left can even refer to

immutable object!

SCOPE; MEMORY MODEL FOR LISTS

What will this output?

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1

ls = [2, 6, 7]
x = 5
inc(ls, x)
print(ls, ' ', x)

Clicker print(ls, " ", x)

A [2,6,7] 5
B [3,7,8] 6
C [3,7,8] 5
D [2,6,7] 6
E I don’t know

What will this output?

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1

ls = [2, 6, 7]
x = 5
inc(ls, x)
print(ls, ' ', x)

Clicker print(ls, " ", x)

A [2,6,7] 5
B [3,7,8] 6
C [3,7,8] 5
D [2,6,7] 6
E I don’t know

Parameter passing

n Assignment statement inside function creates local variable
q Distinct object from any outside function; exists only inside function;

can't be used outside
n And formal parameters of functions are also local variables
n That's all there is to think about and all that's worth knowing

about local variables
q As long as only reference to immutable object passed in as actual

parameter

Still, a little slower: Local vs. Global variables

n Scope: Region of program where identifier (e.g., variable
name) valid and can be used to refer to object. Environment
where variable name is evaluated
q More precisely/advanced: region of program where name–entity

binding is valid
n Local variable defined inside function; scope only inside that

function
n Global variable created (by assignment statement) outside

any function available everywhere

Use Global Variables Sparingly

n When in doubt; use local variables. Avoids confusion over
meaning of name

n Example of when global is appropriate: constant (variable
whose value should never change)

ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
CARDS_IN_DECK = 52
c = 186282 # speed of light in mph

Inside function

n Function looks up variables in order
1. Local variables (including parameters)
2. Global variables (often bad style)

Concept check

def f(num):
num = 4
return 2

def g(val):
num = 8
print(f(1))

g(2)

What gets printed?
A. 1
B. 2
C. 4
D. 8
E. Error because undefined

variable

Concept check

def f(num):
num = 4
return 2

def g(val):
val = 8
print(f(1))

g(2)

What gets printed?
A. 1
B. 2
C. 4
D. 8
E. Error because undefined

variable

Parameter passing: lists as arguments (actual parameters)

n Passing list as argument to function passes reference to that
list, not a copy
q Changes made by function will be visible afterwards in caller's scope!
q Recall: Scope: environment in which variable evaluated

n Functions that change lists passed to them as parameters
called modifiers; changes they make called side effects (of
calling function)

Memory diagram of a list

n ls = [2, 6, 7]
n Technically every list's name is

reference to collection of
references and we should really
draw our memory diagram like
upper figure

n When all elements of immutable
types (a common case) will
usually use simple lower picture

2 6 7

ls

ls
2 6 7

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

2 6 7

x ls

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

2 6 7

x ls

5

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

2 6 7

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

3 6 7

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

3 7 7

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x += 1
for i in range(len(ls)):

ls[i] += 1
ls = [2,6,7]
x = 5
inc(ls, x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

3 7 8

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x = x + 1
for i in range(len(ls)):

ls[i] = ls[i] + 1
ls = [2,6,7]
x = 5
inc(ls,x)
print(ls, ' ', x)

x ls

5

main: global scope

inc

3 7 8

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x = x + 1
for i in range(len(ls)):

ls[i] = ls[i] + 1
ls = [2,6,7]
z = 5
inc(ls,z)
print(ls, ' ', z)

z ls

5

main: global scope

inc

3 7 8

x ls

5
6

Memory diagram of clicker question

def inc(ls, x):
x = x + 1
for i in range(len(ls)):

ls[i] = ls[i] + 1
lglobal = [2,6,7]
z = 5
inc(lglobal, z)
print(lglobal, ' ', z)

z lglobal

5

main: global scope

inc

3 7 8

x ls

5
6

LIST METHODS

Source of list methods material

n Much of this material based on but modified from "CS1 in
Python Peer Instruction Materials" by Daniel Zingaro, in
repository http://www.peerinstruction4cs.org/ licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. (License at:
https://creativecommons.org/licenses/by-nc-
sa/3.0/deed.en_US)

http://www.peerinstruction4cs.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Methods: Getting info

n You can learn about methods for standard built-in types, e.g.,
string, list, in
q Python documentation https://docs.python.org/3/library/index.html

n For many list functions and methods, see Sequence Types à Mutable
sequence types

n Recall at Python console dir(list), dir(str), etc. tells names of
all methods
q For CS 111, ignore all methods with names starting with underscore;

we won't use

https://docs.python.org/3/library/index.html

Key list methods

n ls.append(item): add item to end of ls
n ls.pop(): remove and return element at end of ls
n ls.pop(i): remove and return element at index i in ls
n ls.remove(item): remove first occurrence of item from ls
n ls.insert(i, item): insert item into ls at position i

q sliding elements of ls[i:] all one position right to make room
n ls.sort(): Move elements of ls so that ls is in sorted order

q Requires all elements to be comparable

n All those methods modify ls
n Only pop among those methods has a return value

