CS 111: Program Design 1

J

ecture 17:]

Lists, List memory model,

function variables, Web crawler law

List Methods,

Robert H. Sloan & Richard Warner
University of lllinois at Chicago

Thursday, October 24, 2019

UIC

LISTS

| Next big project: Finish Web Crawler

= We will need to make more extensive use of lists than we
have up until now

=« Recall our strategy something like

‘ Crawl all pages reachable from start

: of pages to visit, initially start
= While that
0 a page

o Getitstext # need to learn how to do this
Q
o Get all the links in that page

o for each link
« if not in already-visited list
= add it to to-visit list

' And besides

= Lists in Python are just awesome

‘ Recall

« Lists are data structures that let us store collections of data in
sequence with indices

A=[2J 3: 5]
['Brennan’]
A+ B

N
| |

A. [2, 3, 5]

B. [2, 3, 5, 'Brennan']
c.['2"', '3', '5', 'Brennan']
D.

E.

This will cause an error
| don’t know

‘ Remember the smallest

: # Empty string, could also be written

=] # empty list

‘ List Functions

=« Not methods; there are also list methods, e.g., append
« len: length of list (i.e., number of elements)

= + will concatenate lists

= Min, max: minimum or maximum of list

= sum: sum of the elements in the list
o E.g., sum([2, 3, 5]) 2 10

‘ Important: Lists are mutable

>>> years= [1788, 1800, 1860, 1932]
>>> years[0] = years[0] + 4

>>> print(years)

[1792, 1800, 1860, 1932]

Lists versus Strings

List String
Elements can be any |Elements are
type characters
Immutable
Heterogeneous Homogenous
elements elements
Can be nested In
other lists

‘ What 1s printed

lst = ['abc.com', 'cnn.com', 'msnbc.com']
1st[1] = "fox.com'

print(len(1lst))
A3

5. 4

c. 23

. 30

. No output; error in 2™ |ine of code

‘ What 1s printed

lst = ['abc.com', 'cnn.com', 'msnbc.com']

1st[1] = "fox.com'

now lst has become ['abc.com', 'fox.com', 'msnbc.com’]
print(len(1lst))

A3
s 4
c. 23
o. 30

. No output; error in 2™ |ine of code

Reminder:

Compound (assignment) operators

Reminder that Python has compound
operators +=, -=, *=, /=, and %=

Does the operation and then assigns
age += 1 # is shorthand for

age = age + 1

fun *= 2 # is shorthand for

fun = fun * 2

N.B.: Variable on left can even refer to
immutable object!

SCOPE; MEMORY MODEL FOR LISTS

| What will this output?

def inc(ls, x):
X += 1
for i in range(len(ls)):
1s[i] += 1

ls = [2, 6, 7]

X =5
inc(ls, Xx) print(ls, " ", x)
print(ls, ' ', Xx) A [2,6,7] 5

B [3,7,8] 6

C [3,7,8] 5

D [2,6,7] 6

E | don’t know

| What will this output?

def inc(ls, x):
X += 1
for i in range(len(ls)):
1s[i] += 1

ls = [2, 6, 7]

X =5
inc(ls, Xx) print(ls, " ", x)
print(ls, ' ', Xx) A [2,6,7] 5

B [3,7,8] 6

C [3,7,8] 5

D [2,6,7] 6

E | don’t know

‘ Parameter passing

Assignment statement inside function creates

Distinct object from any outside function; exists only inside function;
can't be used outside

And of functions are also local variables

That's all there is to think about and all that's worth knowing
about local variables

As long as only reference to immutable object passed in as actual
parameter

‘ Still, a little slower: Local vs. Global variables

Scope: Region of program where identifier (e.g., variable
name) valid and can be used to refer to object. Environment
where variable name is evaluated
More precisely/advanced: region of program where name—entity
binding is valid
Local variable defined inside function; scope only inside that
function

Global variable created (by assignment statement) outside
any function available everywhere

‘ Use Global Variables Sparingly

When in doubt; use local variables. Avoids confusion over
meaning of name

Example of when global is appropriate: constant (variable
whose value should never change)

ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
CARDS_IN_DECK = 52

c = 186282 # speed of light in mph

‘ Inside function

Function looks up variables in order
Local variables (including parameters)
Global variables (often bad style)

‘ Concept check

def f(num): What gets printed?
num = 4 1
return 2 2
4
def g(val): 8
num = 8 Error because undefined
print(f(1)) variable

g(2)

‘ Concept check

def f(num): What gets printed?
num = 4 1
return 2 2
4
def g(val): 8
val = 8 Error because undefined
print(f(1)) variable

g(2)

Parameter passing: /ists as arguments (actual parameters)

Passing list as argument to function
, hot a copy

Changes made by function will be visible afterwards in caller's scope!

Recall: : environment in which variable evaluated
Functions that change lists passed to them as parameters
called ; changes they make called (of

calling function)

Memory diagram of a list

Is =[2, 6, 7]

Technically every list's name is -

reference to (L1
and we should really

draw our memory diagram like 2 6

upper figure

When all elements of immutable
types (a common case) will 26 7
usually use simple lower picture

Memory diagram of clicker question

def inc(1ls, x):

X +=1
main: global scope

for 1 in range(len(ls)):

S
1s = [2,6,7]
X = 54—
inc(ls, x)
inc

print(ls, ' ', Xx)

Memory diagram of clicker question

def inc(ls, x):|

X +=1
for i in range(len(ls)):

ls = [2,6,7]
X =5)

inc(1ls, x)
print(ls, ' ', X)

main: global scope

inc

5

Memory diagram of clicker question

def inc(ls, x):
X +=1 _
for i in range(len(ls)): main: global scope

ls = [2,6,7]

X =5 S}
inc(1ls, x)
print(ls, ' ', X)

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X +=1 _
for i in range(len(ls)): main: global scope

1s[4] += 1 4—.‘
ls = [2,6,7]
5

X =5
inc(1ls, x)
print(ls, ' ', X)

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X +=1 _
for i in range(len(ls)): main: global scope

1s[4] += 1 4—.‘
ls = [2,6,7]
5

X =5
inc(1ls, x)
print(ls, ' ', X)

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X +=1 _
for i in range(len(ls)): main: global scope

1s[4] += 1 4—.‘
ls = [2,6,7]
5

X =5
inc(1ls, x)
print(ls, ' ', X)

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X =x+1 _
for i in range(len(ls)): main: global scope

1s[4] = 1s[i] + 1 .u
ls = [2,6,7]

X =5 3
inc(1ls,x)

print(ls, ' ', Xx) de——

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X =x+1 _
for i in range(len(ls)): main: global scope

1s[4] = 1s[i] + 1 .u
ls = [2,6,7]

z =75 3
inc(1ls,z)

print(ls, ' ', z) 4w

inc

5
6

Memory diagram of clicker question

def inc(ls, x):
X =x+1 _
for i in range(len(ls)): main: global scope

1s[i] = 1s[i] + 1 '9'°'°a'
lglobal = [2,6,7]

z =75 3
inc(1lglobal, z)
print(lglobal, ' ', z){wsem

inc

5
6

LIST METHODS

‘ Source of list methods material

Much of this material based on but modified from "CS1 in
Python Peer Instruction Materials” by Daniel Zingaro, in
repository htip://www.peerinstruction4cs.org/ licensed under
a Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License. (License at:
https://creativecommons.org/licenses/by-nc-

sa/3.0/deed.en _US)

http://www.peerinstruction4cs.org/
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

‘ Methods: Getting info

You can learn about methods for standard built-in types, e.g.,
string, list, in

Python documentation https://docs.python.org/3/library/index.html

For many list functions and methods, see Sequence Types - Mutable
sequence types

Recall at Python console dir(list), dir(str), etc. tells names of
all methods

For CS 111, ignore all methods with names starting with underscore;
we won't use

https://docs.python.org/3/library/index.html

‘ Key list methods

Is.append(item): add item to end of Is

Is.pop(): remove and return element at end of Is
Is.pop(i): remove and return element at indexiinls
Is.remove(item): remove first occurrence of item from Is

Is.insert(i, item): insert item into Is at position |
sliding elements of Is][i:] all one position right to make room

Is.sort(): Move elements of Is so that Is is in sorted order
Requires all elements to be comparable

All those methods modify Is
Only pop among those methods has a return value

