
CS 111: Program Design I
Lecture 13: How to: Pandas &
Supreme Court DB, Sup. Ct.

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
Oct. 10, 2019

Today

n Answer to student question: map and lists
n Few clicker questions reviewing points

relating to our data analytics project
n Using pandas module to analyze Supreme

Court DB: didactic how-to
n Intro to Supreme Court

DOING SOMETHING TO
EACH ITEM OF LIST

You asked for it

You asked

n How do we do something to each item of list?
n map() does that (almost)
n map(fun, ls) returns new list made by

applying fun to each item in ls
q Does not alter ls

def dbl(x):
"""returns 2 * x"""
return 2 * x

>>> map(dbl, [0, 1, 2, 3, 4, 5])
[0, 2, 4, 6, 8, 10]

Mapping with Python... (not in book)

def evens(n):
return map(dbl, range(n))

…or alternatively

Docstring would
helpdef evens(n):

list_n = range(n)
doubled = map(dbl, list_n)
return doubled

def plusone(x):
"""returns x + 1"""
return x + 1

>>> map(plusone, [1, 2, 3, 4])

A. [1, 2, 3, 4, 5]
B. 11
C. [1, 2, 3, 4, 1]
D. [2, 3, 4, 5]
E. None of the above
F. No clue J

Mapping with Python... Your turn

Building a list: map often helps

n Common to want to build up a list by doing
something to a simpler list

n E.g.,
ls = [1, 2, 3, 4, 5]
squares = []
for n in ls:

squares.append(n**2)

Building a list: map often helps

n Common to want to build up a list by doing
something to a simpler list

n E.g., list of squares of integers:

ls = [1, 2, 3, 4, 5]
squares = []
for n in ls:

squares.append(n**2)

Easier with map

def square(x):
return x**2

ls = [1, 2, 3, 4, 5]
squares = map(square, ls)

n Simpler (to write & to understand!), nicer
n (Example of "functional" style of programming)

ls = [1, 2, 3, 4, 5]
squares = []
for n in ls:

squares.append(n**2)

VS.

REVIEW OF LAST TIME STUFF
WE'RE ABOUT TO USE

Using modules

Which statement should be at the top of my
code if I need to use Python's antigravity
module?

A. use antigravity
B. include antigravity
C. #include antigravity
D. import antigravity
E. allow antigravity

Encodings

n The ASCII character set has 95 specified

printing characters (including, a-z, A-Z, 0-9,

space, some punctuation), and 3 to 33

nonprinting characters including \n

n How many bits are needed to have enough

distinct patterns for all ASCII characters

A. < 7

B. 7

C. 8

D. > 8

With 8 bits

n Can encode 256 characters: Way more than
ASCII; way less than all of Unicode

n Unicode's 2019 most common encoding
(UTF-8) uses 1–4 bytes per character; and
uses the same 1 byte as ASCII for the ASCII
characters

n 94% of web today is Unicode encoded as
UTF-8 (counting ASCII as part of that)

