CS 111: Program Design 1
Lecture # 7: First Loop, Web

Crawler, Functions

Robert H. Sloan & Richard Warner
University of lllinois at Chicago
September 17, 2019

UIC



‘ What will the value of z be after this

code runs?
1

def foo(x): 2
if x 1= 3: This will cause an
return 1 error
return 2

z = foo(-1)




‘ What will the value of z be after this

code runs?
1

def foo(x): 2
it x 1= 3: This will cause an
print(1) error or odd
return 2 unexpected result

z = foo(-1)




‘ shifting by k for very short strings

def shift(s, k):

if len(s) == 1:
return rotate(s, k)

if len(s) == 2:
ans = (rotate(s[@], k) +

rotate(s[1], k))

return ans

print("Sorry, can't help you")



‘ From length 2 to 3

def shift(s, k):
if len(s) == 1:
return rotate(s, k)
if len(s) == 2:
ans = (rotate(s[©@], k) +
rotate(s[1], k))
return ans
if len(s) == 3:
return (rotate(s[©@], k) +
rotate(s[1], k) +
rotate(s[2], k))
print("Sorry, can't help you")



‘ Or even 4

def shift(s, k):
if len(s) == 1:
return rotate(s, k)
if len(s) == 2:
return rotate(s[0], k) + rotate(s[1], k)
if len(s) == 3:
return (rotate(s[@], k) + rotate(s[1], k)
+ rotate(s[2], k))
if len(s) == 4:
return (rotate(s[@], k) + rotate(s[1], k)
+ rotate(s[2], k) + rotate(s[3], k))
print("Sorry, can't help you")



But...

This will be a real drag even for 140
character tweets

Imagine the 5-page report with 15,000
characters. . ..

We need for loops

for loops allow us to do same thing for every item
In a sequence!



FIRST LOOK AT FOR LOOPS



‘ for loop basic idea

for ¢ in st:
<body that refers to c¢>

execute body len(st) times, once each with c
being each character of string st in order

(In general, st could be any sequence, e.g., a
list and ¢ becomes each item of st once)



‘ Example: d detector

In [1]: d('I would like dodecarchy in the US')
Out[1]: 3

In [2]: d('I am against the letter after c')
Out[2]: ©

def d(input):
counter = 0
for symbol in input:



‘ Example: d detector

In [1]: d('I would like dodecarchy in the US")
out[1]: 3

In [2]: d('I am against the letter after c')
out[2]: ©

We choose the name of a variable...

def d(input):
counter = 0
for symbdT in inputt
if symbol == 'd':

.. and we provide a sequence

counter = counter + 1
return counter



' This will print?

for x in "0123": A. © D. ©
print(x) 1
B. © 2
3 3
4
C. ©
1 E. This will
2 run
3 forever




‘ Lab Hint 1: Build up answer in for loop

Very often build up answer to return inside for
loop and return it outside loop, after its end:

def d(input):
counter = 0
for symbol in input:
if symbol == 'd':
counter = counter + 1
return counter



‘ Example

Return string with lower-case characters
replaced by X, all other left unchanged

def x it(input):

"""Example for lecture slides
answer = '' #Empty string
for ¢ in input:

next = ¢

if next.islower():
next = 'X'

answer = answer + next

return answer



‘ Using else instead

def x_else_it(input):
"HHExample with if-else instead of
ifr
answer = '' #Empty string
for ¢ 1n input:
if c.islower():
answer = answer + 'X'
else:
answer = answer + C
return answer



Lab Hint(s) #2/Reminder

word = 'hi’
word.upper() —-> "HI"

n".isalpha() =2 True
n'.islower() -2 True

n' .isupper() > False



‘ Winter 1s coming



‘ Winterts Midterm & Project coming

Midterm 1 next week Tuesday

Will cover material from assigned reading so far,
further details given in lecture, and legal material
on lecture

Some of Thursday: Review

Lab out tomorrow (due Friday), which will be
part of

Project 1: Full Caesar and Vigenere ciphers
Not due until 1 week from Sunday (but start)




Towards Crawling the Web

(MORE ABOUT) FUNCTIONS



‘ Web crawler

One long-term goal of course: build and
understand web crawler, program that will
visit every page reachable from given start

web page
Key component of, e.g., search engine

Many pieces, somewhat complicated
Need an organizing principle: functions!
Also need to do things over and over: iteration

Will return to crawler from time to time



‘ Functions: definition & use

Can do 2 things with function: Define it; Call it

def fn name(parameters):
E.g., def string_multiply(my_string, num):

(use)
fn_name(parameters)
E.g, string multiply('hi', 3)

Runs function fn_name on parameters



Note: Deftinition must have some indented
code after the def fn_name(): line

This is not a legal function definition:
def nothingness():

But

def nothingness():
return

Is legal (though useless) function definition



‘ Input parameters (1)

Most functions have =1 input parameters
(though legal & sometimes appropriate to
create function with no input parameters).

Example of built-in function (technically
specifically a method function) with zero
inputs: String method upper():

word = "hi"
word.upper() —-> "HI"



Return values

function may or may not return a value

If need terminology, call function that returns
value fruitful function; function that doesn't
non-fruitful function

If (and only if) function returns value, legal to
assign name to (return value of) function call:

X = fruitful fn _name(inputs)



‘ Example

Say we want to find absolute value of a
number (say -3)

There is built-in Python function called abs
that finds absolute value

In [1]: x = abs(-3)
In [2]: X
out[2]: 3




‘ Most famous built-in non-fruitful
function

print()

print doesn't return any value.

We don't use print (or any non-fruitful function) for
its return value but for some other reason



functions you write that return something

Must include a line that begins

return



‘ function tflow

A function's execution ends either when
A return statement is executed, or
Last line of code is executed
whichever comes first



‘ What 1s wrong with this function?

def triple(x):
return 3 * X
print("Triple the input is", 3*x)

You should never use a print statement in a function
You must calculate the value of 3*x before you return it
You should not have statements after the return

A function can return string types but not a number
Nothing



‘ Function as input-output box

— |z

—> 3 %X




‘ Parameters (1)

(actual) parameter

>>> y = abs(-3)
>>> Yy
3



‘ Parameters (2)

Parameters in the ()s in def statement called
formal parameters

Formal parameters are (like) variables.
they're the thing that changes inside function

Functions have 0 or more parameters

Value(s) in function call: actual parameter(s)
Must be same number as formal parameters
Could be variables and/or literal values



‘ Formal vs. actual parameters

def triple(x):
return 3 * X

In
In

Out|

In

Out|

w w N N

n =17
: triple(n)
51

]: 4 + triple(20)
]: 64

formal parameter



‘ Formal vs. actual parameters

def triple(x):

In
In

Out|

In

Out|

return 3 * X-

w w N N

n =17
: triple(n)
51

]: 4 + triple(20)
]: 64

formal parameter
(which happens to
be x in this example)



‘ Formal vs. actual parameters

def triple(x):

In
In

Out]|

In

Out]|

formal parameter

return 3 * Xx- (which happens to

w w N N

be x in this example)

n =17
. triple(n
51 actual parameter

]: 4 + triple(20
]: 64



‘ Parameters and function execution

Like functions in high-school Algebra 2:

At time function called, formal parameter takes on
value of actual parameter

Algebra 2:
if f(x) = 3x, then 4 + f(20) = 64

and implicitly at least, the formal parameter x took on the
value 20.

Python:
4 + triple(3)

formal x in def of triple() bound to 3 for length of
run of triple()



In even more detail

def triple(x)e
return 3 * X

formal parameter

>>> 4 + triple(20)



In even more detail

def triple(x)< formal parameter
return 3 * X X bound to 20

>>> 4 + triple(20)

At point where triple(20) is called, value 20 is
assigned to triple's internal x parameter,
multiplication is done getting value 60, number
60 is returned (and triple is done), and
interpreter (command line) adds 4 and 60



