
CS 111: Program Design I
Lecture 10: while concluded, list
basics, Midterm

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
October 1, 2019

ITERATION, ITERATION,
ITERATION. …

How many times will this loop print

x = "Register now"
while len(x) > 9:

print(x)
x = x + "!"

A. 12
B. 9
C. 3
D. 4
E. It will print forever

What value is stored in variable z when code finishes
executing?

x = 1
y = 2
z = 0
while x <= 3:

z = z + y
x = x + 1

A. 2
B. 3
C. 4
D. 6
E. 8

What value is stored in variable z when code finishes
executing?

x = 1
z = 1
while x <= 3:

z = z + x
x = x + 1

A. 2
B. 3
C. 4
D. 7
E. 9

What value is stored in variable z when
code finishes executing?
x = 5
y = 1
z = 3
while x > 0:

z = z + y
x = x - 1

A. 2
B. 3
C. 4
D. 8
E. 9

What value is stored in variable z when
code finishes executing?
x = 0
z = 0
while x < 3:

x = x + 1
z = z + 2

A. 2
B. 3
C. 4
D. 6
E. 8

RELATING TO MIDTERM

functions and the midterm

n Writing small Python functions: master skill
for CS 111 Law

n docstring requirements
q Exactly 1
q In quotes, by convention """inside 3 double"""

q Must appear immediately after def line
q Is distinct from comments
q Universally considered good style in Python;

required in current lab

functions in our class and most places

n Very rarely or never use the input() function
q Exception: Zybooks is fond of style that makes

heavy use of Python
n Usually but not always have formal

parameters / (input) arguments / inputs
q Number of them and their intended meaning

should be part of problem specification on test;
specification or your design on lab or project

Python types

n Basic understanding of Python types also a
master skill for CS 111 Law

Python types

n Basic understanding of Python types also a
master skill for CS 111 Law

n Can check type of expression at console with
built-in function type()
q E.g., type(3 % 17) à int

Midterm: Hold Harmless if #2 ok

if midterm2 > midterm1 and midterm2 >= 70:
midterm1 = midterm2

MIDTERM: THE CODING
QUESTIONS

PYTHON BASICS
CONCLUDED : LISTS, RANGE

Lists: First peek

>>> evens = [2, 4, 6, 8, 10, 12]

>>> justices = ['Marshall', 'Brandeis', 'Brennan']

>>> mixed_grill = ['beef', 'shrimp']

>>> really_mixed = [2, 'beef', 3.5, 'shrimp']

>>> empty = []

>>> ls = [1, 'Brennan', ['Joe', 'Donald']]

Literal notation

n Literal notation means how we can write
down specific object in our code, without
having to calculate it

n 1, 2.0, 'three', and False are literal notations
for an int, float, string, and bool, respectively

List literal notation is []

So:
In [1]: evens = [2, 4, 6, 8, 10, 12]

And:
In [2]: x = 'Please'
In [3]: y = 'vote'
In [4]: ls = [x, y]
In [5]: ls
Out[5]: ['Please', 'vote']

RANGE

for loops are more general

for loop_variable in something_okay:
<body>
in which loop_variable is each
element of something_okay in
turn
Not just for string characters!

List Elements
range of numbers!

range function

n range(start, stop) gives something for loop
can walk over, going from integer start up to
but not including integer stop (like slices!).
E.g.:

for i in range(0, 25):
print(i)

prints out 0, 1, 2, …, 24

Getting a list out of range

n Technically type of output of range is range, a
kind of iterator (take CS 341 for more…)

n If you want the list, use list(range(start, stop))
n E.g.,
>>> list(range(0, 25))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24]

types and type conversion

n Note that the name of a type is an operator to
convert items to that type

n list(range(1,4)) à [1, 2, 3]
n list() must be given a very special kind of

object to give back a list: an iterable. Output
of range() is only one we'll see. But

n int(17.17) à 17
n str(17.17) à '17.17'

And can get type with type()

n type('cat') à str
n type([1, 2, 3]) à list
n Note:

q type('cat') == str True
q type('cat') == 'str' False!
q str, list, int, float are Python keywords

Back home on the Range: more examples

>>> list(range(0, 25))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

list(range(25)) # Gives same thing
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]

list(range(3, 9))
[3, 4, 5, 6, 7, 8]

range arguments

n 1 argument: start with 0
n 3 arguments: 3rd is skip. E.g.,

>>> list(range(3,15,3))
[3, 6, 9, 12]

Why range?

n Useful for looping over (coming)
q Working with numbers
q Working with strings, but want to know index not

just character. I.e.,
n for i in len(str):

n Lists for free

FOR (CONT.): THE FINAL
PYTHON BASIC CONSTRUCT

iteration: More for

n Control can flow 3 ways
1. sequentially
2. conditionally (if elif else)
3. repeatedly: iteration

n iteration either while or for
n for typically easier when appropriate
n Many things for can do; so far really only saw

q for character in a_string:
n Can also iterate over items in list, or in a range()

Advantage of for over while

n loop variable created automagically and
automagically gets proper values in
sequence:
q Let the computer do the work instead of you

whenever possible!

iterating over a list

for faculty in ['Bob', 'Shanon', 'Dave']:
print("Hi ", faculty,

"Building finishes 2020 so no
new office yet.")

iterating over a list

for faculty in ['Bob', 'Shanon', 'Dave']:
print("Hi ", faculty,

"Building finishes 2020 so no
new office yet.")

loop variable

loop body

Flow of execution

(from How To Think Like a Computer
Scientist)

for to count

for i in range(10):
print("Happy Homemade Cookies Day!")

Yes, today really is
National Homemade Cookies Day!!

Which will print numbers 1 through 3?

for x in range(1, 3): # A
print(x)

print(x)

for x in range(1, 4): # B
print(x)

A. A
B. B
C. Both A and B
D. Neither

Which this print #'s 1 through 3?

for x in range(1, 4):
print(x)
x = x + 1

A. Yes
B. No
C. Error
D. Who cares which

of A, B, or C
because its style is
so awful

