
CS 111: Program Design I
Lecture 5: Strings & heading to
Caesar

Robert H. Sloan & Richard Warner
University of Illinois at Chicago
September 10, 2019

ASSIGNMENT (CONT.)

Assignment to variables: Semantics

<variable> = <expression>

1. Evaluate <expression>
2. Put that value into computer's memory and

attach name <variable> as "sticky note"
giving name for that memory location

Expressions

n Can be simple value, e.g.,
q "Sandra Day O'Conner" or 17

n Also can be almost any mathematical statement

Expressions

n Can be a simple value, like
q "Sandra Day O'Conner" or 17

n Also can be almost any mathematical statement

x = 6 * 2
y = x - 10

12
x

Memory
("object space")

Expressions

n Can be a simple value, like
q "Sandra Day O'Conner" or 17

n Also can be almost any mathematical statement

x = 6 * 2
y = x - 10

12
x

Memory
("object space")

Now evaluate x – 10
getting 12 – 10 à 2

Expressions

n Can be a simple value, like
q "Sandra Day O'Conner" or 17

n Also can be almost any mathematical statement

x = 6 * 2
y = x - 10

x
y

Memory
("object space")

12

2

At end of this code y will be

x = 5
y = x * 3
x = 2

A. 2 B. 5 C. 6 D. 15

At end of this code y will have what
value?
y = 3 + 2 + 1
y = y * 2

A. 2
B. 6
C. 8
D. This code will cause an error
E. 12

x = 7
print(x)
x = x + 1
print(x)
y = x - 3
print(x)
print(y)

Code

At the end of running
this code, what will
appear from the print
statements in the
execution window?

7
8
5
5

7
8
8
5

7
7
7
4

A B C

D. This will
cause an error

E. I don’t
know

A BIT MORE PYTHON
FUNCTIONS

Composition of functions

n Functions can use other functions!

n Both built-in Python functions and ones you
write

Composition example

def triple(x):
return 3 * x

def times9(x):
return 9 * x

OR
def times9(x):

return triple(triple(x))

times9x 9 * x

Multiple inputs (or no inputs) ok

our_func
Authors: Bob and Richard

Date: September 52, 2019

def our_func(x, y):
"""returns x squared plus y"""

return x * x + y

our_funcx, y x * x + y

Order of common operations

n Things in ()s first. Use ()s whenever you are
in the slightest doubt

n Next ** (exponentiation)
n Next *, /, and //
n Lastly + and –

What is printed

print(6 + 1 * 3)

A. 9
B. 21
C. Some other value

STRINGS, STRINGS, STRINGS!

Strings

n Are really key data type for many legal issues
q Legal analytics, and automated discovery involve

searches through zillions of pages of documents
n And automation is putting some lawyers out of work!

q Privacy in 2019 requires encryption
q Defense in depth against bad consequences of

data breaches in 2019 requires encryption
n And encryption works on strings

q Web search string based

Python awesome language for working
with strings
n Python happy to have strings in 'these' or

"these" or even '''these''', making it much
simpler to deal with embedded quote
characters such as
q '''Justice Sandra Day O'Conner wrote,
"The power I exert on the court depends
on the power of my arguments, not on my
gender."'''

n Python can handle carriage returns in strings

paragraph1 = '''Many excellent books offer illuminating descriptions of the current crises in
online privacy and security. We take the next step and offer solutions. Our
solutions are public policy recommendations. Society needs innovative
policies to reap the proper benefits from rapid technological change. We
hope our recommendations will be adopted and be successful, but we also
have another important goal: a shared understanding of the problems and a
common language in which to discuss and analyze solutions. Finding
adequate solutions to today’s online privacy and security problems requires
combining a computer scientist’s expertise with a lawyer’s understanding of
how to forge sound public policy and laws. You don’t need to be a legal
scholar or to know any computer science to read this book, even though it
contains sophisticated and accurate computer science and law. We have
written as much as possible in plain English, but our plain English
descriptions should be of interest even to experts. Solving the privacy and
security problems means experts in one field have to find ways to
communicate with experts in another.'''

String

n String: any sequence of characters enclosed
in single, double, or triple quotes
q Beginning and ending quote marks need to match
q Can use either 3 single quotes ''' or 3 double quotes

for triple quotes
q Convention: For short-ish strings (<= 40 characters)

use single quotes if no internal quotes or newlines
q Convention: Docstrings are in triple quotes

n Example of a sequence
n Other important kind of sequence is list

(coming soon)

Which is a valid Python string?

A. "Admiral Grace Hopper"
B. "Admiral Grace Hopper'
C. Admiral Grace Hopper
D. "Admiral Grace Hopper' "
E. Both A and D

Things we can do with strings

n Find their length, using the built-in Python function len
>>> first_chief = 'Jay'
>>> len(first_chief)
3
>>> len('Hi there')
8
n String arithmetic: + à concatenation; * à repeat
>>> "Chief Justice " + first_chief
'Chief Justice Jay'
>>> 4 * first_chief
'JayJayJayJay'

Arithmetic limited to + and integer *

>>> firstChief / 1
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'int'
>>> 3.0 * firstChief
Also Barf

n Importance of types: floats are not integers, and
multiplication of int by string makes some sense,
but multiplication of float by string makes no
sense

What does this code print?

x = 'Go'
y = 'Flames!'
print(x + y)

A. Go Flames!
B. GoFlames!
C. Error because the addition is illegal
D. Go

Indexing strings

n [i] after string gives character number i
n Important: Python (and many computer

scientists!) counts from 0, not from 1!
n So if first_justice = 'Jay'

q first_justice[0] à "J"
q first_justice[1] à "a"
q first_justice[2] à "y"
q first_justice[3] à Out of range error!
q first_justice[7] à also out of range error

Negative indices

n Sometimes we want to get our hands on the
last character of a string

n One way: first_justice[len(first_justice) – 1]
q Why is that – 1 in there?

Negative indices

n Sometimes we want to get our hands on the
last character of a string

n One way: first_justice[len(first_justice) – 1]
q Why is that – 1 in there?
q Because "Jay" has 3 characters, so length 3, but

characters numbered 0, 1, 2, and in general the
characters of string s are numbered

q 0, 1, …, len(s) – 1

Negative indices

n Sometimes we want to get our hands on the
last character of a string

n One way: first_justice[len(first_justice) – 1]

n Another, often easier to think about way:
q Index -1 is always last character of string
q And index -2 2nd last character, and so on

q So first_justice[-1] à 'y'; first_justice[-3] à 'J'

Summary: Indexing (including negative)

>>> s = "Register to vote!"
>>> len(s)

17
>>> s[7]
'r'
>>> s[17]
error!
>>> s[len(s) - 1]
'!'
>>> s[-1]
'!'

0 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1
0 1 2 3 4 5 6

Finding character's (or substring's)
index
n Use String method find to obtain index of first

occurrence of item in string or -1 if not in
string at all

In [1]: hi = 'hello world'
In [2]: hi.find('h')
Out[2]: 0
In [3]: hi.find('o')
Out[3]: 4
In [4]: hi.find('q')
Out[4]: -1

This will print?

hi = 'Hello World'
hey = 'Hey world!'
print(hi.find('o'), hey.find('o'))

A. 4 4
B. 4 5
C. 5 5
D. 5 6

find() String method works for
substrings too
hi = 'Hello World'
hey = 'Hey world!'
print(hi.find('ello'), hey.find('ello'))

A. 2 -1
B. 1 -1
C. 1 1
D. 2 2
E. Error

Towards Caesar Cipher

At the heart of the cipher is shifting
letters
n Every letter is shifted k to left or right in

alphabet, where combination of k and left or
right is encryption key

n First design decision: Encode key (have
inputs to shift function) as
q 2 inputs: positive integer and "left" or "right
q 1 input, integer, with sign indicating left/right

n And if 1 input, is negative shift left or right

At the heart of the cipher is shifting
letters
n Every letter is shifted k to left or right in

alphabet, where combination of k and left or
right is encryption key

n First design decision: Encode key (have
inputs to shift function) as
q 2 inputs: positive integer and "left" or "right
q 1 input, integer, with sign indicating left/right

n And if 1 input, is negative shift left or right
q All possible answers seem reasonable; so pick

one and see how it works

At the heart of the cipher is shifting
letters
n Every letter is shifted k to left or right in

alphabet, where combination of k and left or
right is encryption key

n First design decision: Encode key (have
inputs to shift function) as
q 2 inputs: positive integer and "left" or "right
q 1 input, integer, with sign indicating left/right

n And if 1 input, is negative shift left or right
q Our arbitrary answer: + = shift right/up in alphabet:

n + 2 means shift A to C

Example: +3 Shift

ABCDEFGHIJKLMNOPQRSTUVWXYZ à+3 SHIFT
DEFGHIJKLMNOPQRSTUVWXYZ???

What do we do when we run off the end?
Wrap around!

ABCDEFGHIJKLMNOPQRSTUVWXYZ à+3 SHIFT
DEFGHIJKLMNOPQRSTUVWXYZABC

How do we implement k shift?

n We need letter number i transformed to letter
i + k, assuming i + k is not past z (i.e., 25),
and to wrap otherwise

n First step: How do we find what letter number
a given character is in the alphabet?

A. find
B. Indexing
C. String addition
D. Using the remainder function %

Finding letter in alphabet

ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

>>> ALPHABET.find('A')

A. 0

B. 1

C. Error

D. Non-error other than 0 or 1

find() gives position in alphabet

n Using Python 0 to 25 numbering!

n And adding k to go forward just works

q if we don't fall off the end

n Trick you will use repeatedly as computer

scientist: remainder (also called mod)

operator % works for "wrapping around"

n E.g., Z forward 3 should give C

n (25 + 3) % 26 à 2

q Recall ALPHABET[25] à Z

% for rotating, wrapping around

n Wikipedia and others describer Caesar cipher
as using shift of letters

n Computer scientists often speak of rotation
n In your head, think of 26 letters of alphabet in

a circle not in a line

You have the pieces of rotate_letter
def rotate_letter(character, k):

""”Shifts character k positions
right for k>0, wrapping around if past z"""
ALPHABET = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

…

But need some more Python to

n Handle left shifts
q Julius Caesar's eventual successor, Augustus

used a shift left of 1
q And need opposite direction shift to decrypt

n Encrypt whole string, such as "ATTACK" or
"RETREAT" instead of just 1 character

n Handle mixed case and spaces, as in
"ATTACK AT DAWN" and "Retreat now"

